题目内容
计算:
+
+
+
+…+
=______.
| 12+22 |
| 1×2 |
| 22+32 |
| 2×3 |
| 32+42 |
| 3×4 |
| 42+52 |
| 4×5 |
| 20122+20132 |
| 2012×2013 |
分析:通过观察,每一项都可拆成“2+分数单位”的形式,共有2012项,原式变为=(2+
)+(2+
)+…+(2+
)=2×2012+(1-
),进一步计算即可.
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 2012×2013 |
| 1 |
| 2013 |
解答:解:
+
+
+
+…+
,
=(2+
)+(2+
)+…+(2+
),
=2×2012+(1-
),
=4024+
,
=4024
.
| 12+22 |
| 1×2 |
| 22+32 |
| 2×3 |
| 32+42 |
| 3×4 |
| 42+52 |
| 4×5 |
| 20122+20132 |
| 2012×2013 |
=(2+
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 2012×2013 |
=2×2012+(1-
| 1 |
| 2013 |
=4024+
| 2012 |
| 2013 |
=4024
| 2012 |
| 2013 |
点评:另解:
+
+
+
+…+
,
=
+
+
+
+…+
+
,
=
+
+
+
+
+
+…+
+
,
=
+
+
+…+
+
,
=2×2012+
,
=4024
.
| 12+22 |
| 1×2 |
| 22+32 |
| 2×3 |
| 32+42 |
| 3×4 |
| 42+52 |
| 4×5 |
| 20122+20132 |
| 2012×2013 |
=
| 12 |
| 1×2 |
| 22 |
| 1×2 |
| 22 |
| 2×3 |
| 32 |
| 2×3 |
| 20122 |
| 2012×2013 |
| 20132 |
| 2012×2013 |
=
| 1 |
| 2 |
| 2 |
| 1 |
| 2 |
| 3 |
| 3 |
| 2 |
| 3 |
| 4 |
| 4 |
| 3 |
| 2012 |
| 2013 |
| 2013 |
| 2012 |
=
| 2 |
| 1 |
| 1+3 |
| 2 |
| 2+4 |
| 3 |
| (2011+2013) |
| 2012 |
| 2012 |
| 2013 |
=2×2012+
| 2012 |
| 2013 |
=4024
| 2012 |
| 2013 |
练习册系列答案
相关题目