题目内容
19.口算:| $\frac{2}{19}$×2= | $\frac{4}{15}×$8= | $\frac{7}{18}×$12= | $\frac{2}{7}×$2= | $\frac{3}{4}×$8= |
| $\frac{2}{3}×3$= | $\frac{2}{11}×2$= | $\frac{3}{14}×7$= | $\frac{2}{5}$×10= | $\frac{1}{6}$×2= |
| 6×$\frac{2}{3}$= | 5×$\frac{2}{7}$= | $\frac{7}{8}$×2= | $\frac{3}{4}$×3= | $\frac{3}{4}$×4= |
| $\frac{2}{9}$×7= | 2×$\frac{2}{3}$= | $\frac{2}{5}$×2= | 5×$\frac{2}{15}$= | 57×$\frac{2}{19}$= |
| $\frac{2}{9}$×$\frac{3}{8}$= | $\frac{2}{9}×$0= | $\frac{25}{121}$×$\frac{11}{50}$= | $\frac{3}{4}$×$\frac{1}{2}$= | 7×$\frac{3}{21}$= |
| $\frac{4}{5}$×$\frac{3}{8}$= | $\frac{7}{12}$×$\frac{3}{7}$= | $\frac{2}{5}$×10= | $\frac{9}{14}$×$\frac{35}{36}$= | 5×$3\frac{2}{15}$= |
分析 根据分数乘法的计算方法计算.
解答 解:
| $\frac{2}{19}$×2=$\frac{4}{19}$ | $\frac{4}{15}×$8=$\frac{32}{15}$ | $\frac{7}{18}×$12=$\frac{14}{3}$ | $\frac{2}{7}×$2=$\frac{4}{7}$ | $\frac{3}{4}×$8=6 |
| $\frac{2}{3}×3$=2 | $\frac{2}{11}×2$=$\frac{4}{11}$ | $\frac{3}{14}×7$=$\frac{3}{2}$ | $\frac{2}{5}$×10=4 | $\frac{1}{6}$×2=$\frac{1}{3}$ |
| 6×$\frac{2}{3}$=4 | 5×$\frac{2}{7}$=$\frac{10}{7}$ | $\frac{7}{8}$×2=$\frac{7}{4}$ | $\frac{3}{4}$×3=$\frac{9}{4}$ | $\frac{3}{4}$×4=3 |
| $\frac{2}{9}$×7=$\frac{14}{9}$ | 2×$\frac{2}{3}$=$\frac{4}{3}$ | $\frac{2}{5}$×2=$\frac{4}{5}$ | 5×$\frac{2}{15}$=$\frac{2}{3}$ | 57×$\frac{2}{19}$=6 |
| $\frac{2}{9}$×$\frac{3}{8}$=$\frac{1}{12}$ | $\frac{2}{9}×$0=0 | $\frac{25}{121}$×$\frac{11}{50}$=$\frac{1}{22}$ | $\frac{3}{4}$×$\frac{1}{2}$=$\frac{3}{8}$ | 7×$\frac{3}{21}$=1 |
| $\frac{4}{5}$×$\frac{3}{8}$=$\frac{3}{10}$ | $\frac{7}{12}$×$\frac{3}{7}$=$\frac{1}{4}$ | $\frac{2}{5}$×10=4 | $\frac{9}{14}$×$\frac{35}{36}$=$\frac{5}{8}$ | 5×$3\frac{2}{15}$=15$\frac{2}{3}$ |
点评 本题考查了分数乘法的口算能力.是易错题.
练习册系列答案
相关题目
14.72+(28+56)=(72+28)+56运用了( )
| A. | 加法交换律 | B. | 加法结合律 | ||
| C. | 乘法结合律 | D. | 加法交换律和结合律 |
11.计算下面各题.
| $\frac{3}{5}×$20 | $\frac{5}{7}$$+\frac{1}{3}$ | $\frac{1}{7}$×$\frac{2}{3}$ | $\frac{2}{9}$×18 |
| $\frac{3}{8}$$÷\frac{9}{10}$ | $\frac{9}{20}$÷$\frac{3}{10}$ | $\frac{18}{5}$÷x=$\frac{4}{5}$ | x÷$\frac{1}{4}$=$\frac{3}{20}$ |