题目内容

计算:
(1)0.1+0.2+0.3+0.4+…+0.9+0.1+0.11+0.12+…+0.98+0.99
(2)
1
2
1+
1
2
+
1
3
(1+
1
2
)×(1+
1
3
)
+…+
1
9
(1+
1
2
)×(1+
1
3
)×…×(1+
1
9
)
考点:分数的巧算,小数的巧算
专题:计算问题(巧算速算)
分析:(1)首先,算式分两部分:0.1+0.2+0.3+0.4+…+0.9和0.1+0.11+0.12+…+0.98+0.99,这两部分是两个等差数列,由此可根据高斯求和公式计算.
(2)把分母化简后,原式变为
1
3
+
1
6
+
1
10
+…+
1
45
,分母依次多3、4、5,…,通项为
2
(n+1)×(n+2)
=2×(
1
n+1
-
1
n+2
),前n项和s=1-
2
n+2
,故原式为
4
5
解答: 解:(1)0.1+0.2+0.3+0.4+…+0.9+0.1+0.11+0.12+…+0.98+0.99
=(0.1+0.9)×9÷2+(0.1+0.99)×90÷2
=4.5+49.05
=53.55

(2)
1
2
1+
1
2
+
1
3
(1+
1
2
)×(1+
1
3
)
+…+
1
9
(1+
1
2
)×(1+
1
3
)×…×(1+
1
9
)

=
1
2
3
2
+
1
3
3
2
×
4
3
+…+
1
9
3
2
×
4
3
×…×
10
9

=
1
2
3
2
+
1
3
4
2
+
1
4
5
2
+…+
1
9
10
2

=
1
3
+
1
6
+
1
10
+…+
1
45

=1-
2
8+2

=1-
1
5

=
4
5
点评:(1)高斯求和公式:等差数列和=(首项+末项)×项数÷2.
(2)此题关键运用了通项公式
2
(n+1)×(n+2)
=2×(
1
n+1
-
1
n+2
)以及前n项和公式s=1-
2
n+2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网