题目内容
计算:
(1)0.1+0.2+0.3+0.4+…+0.9+0.1+0.11+0.12+…+0.98+0.99
(2)
+
+…+
.
(1)0.1+0.2+0.3+0.4+…+0.9+0.1+0.11+0.12+…+0.98+0.99
(2)
| ||
1+
|
| ||||
(1+
|
| ||||||
(1+
|
考点:分数的巧算,小数的巧算
专题:计算问题(巧算速算)
分析:(1)首先,算式分两部分:0.1+0.2+0.3+0.4+…+0.9和0.1+0.11+0.12+…+0.98+0.99,这两部分是两个等差数列,由此可根据高斯求和公式计算.
(2)把分母化简后,原式变为
+
+
+…+
,分母依次多3、4、5,…,通项为
=2×(
-
),前n项和s=1-
,故原式为
.
(2)把分母化简后,原式变为
| 1 |
| 3 |
| 1 |
| 6 |
| 1 |
| 10 |
| 1 |
| 45 |
| 2 |
| (n+1)×(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 2 |
| n+2 |
| 4 |
| 5 |
解答:
解:(1)0.1+0.2+0.3+0.4+…+0.9+0.1+0.11+0.12+…+0.98+0.99
=(0.1+0.9)×9÷2+(0.1+0.99)×90÷2
=4.5+49.05
=53.55
(2)
+
+…+
=
+
+…+
=
+
+
+…+
=
+
+
+…+
=1-
=1-
=
=(0.1+0.9)×9÷2+(0.1+0.99)×90÷2
=4.5+49.05
=53.55
(2)
| ||
1+
|
| ||||
(1+
|
| ||||||
(1+
|
=
| ||
|
| ||||
|
| ||||||
|
=
| ||
|
| ||
|
| ||
|
| ||
|
=
| 1 |
| 3 |
| 1 |
| 6 |
| 1 |
| 10 |
| 1 |
| 45 |
=1-
| 2 |
| 8+2 |
=1-
| 1 |
| 5 |
=
| 4 |
| 5 |
点评:(1)高斯求和公式:等差数列和=(首项+末项)×项数÷2.
(2)此题关键运用了通项公式
=2×(
-
)以及前n项和公式s=1-
.
(2)此题关键运用了通项公式
| 2 |
| (n+1)×(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 2 |
| n+2 |
练习册系列答案
相关题目