题目内容
阅读理解:
1-
=
=
-
=
=
-
=
=
…
据此规律完成下列各题:
(1)填空
-
= ;
(2)求
+
+…+
的值;
(3)求
+
+
+
+
的值.
1-
| 1 |
| 2 |
| 2-1 |
| 1×2 |
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 3-2 |
| 2×3 |
| 1 |
| 2×3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 4-3 |
| 3×4 |
| 1 |
| 3×4 |
…
据此规律完成下列各题:
(1)填空
| 1 |
| n |
| 1 |
| n+1 |
(2)求
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 2010×2011 |
(3)求
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| 7×9 |
| 1 |
| 9×11 |
| 1 |
| 11×13 |
考点:分数的拆项
专题:计算问题(巧算速算)
分析:(1)分析题意得:差的分子为1,分母为减法算式中两个分数分母的乘积;据此规律解答即可.
(2)(3)根据已知式子规律,先把分数拆项,再把第2项与第3项互相抵消,第4项与第5项互相抵消,以此类推,则只剩下第1项与最后1项;据此解答即可.
(2)(3)根据已知式子规律,先把分数拆项,再把第2项与第3项互相抵消,第4项与第5项互相抵消,以此类推,则只剩下第1项与最后1项;据此解答即可.
解答:
解:(1)分析题意得:差的分子为1,分母为减法算式中两个分数分母的乘积;
所以:
-
=
;
(2)求
+
+…+
=1-
+
-
+…+
-
+
-
=1-
=
(3)
+
+
+
+
=
×(
-
)+
×(
-
)+
×(
-
)+
×(
-
)+
×(
-
)
=
×(
-
+
-
+
-
+
-
+
-
)
=
×(
-
)
=
×
=
故答案为:
.
所以:
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n×(n+1) |
(2)求
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 2010×2011 |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2010 |
| 1 |
| 2011 |
=1-
| 1 |
| 2011 |
=
| 2010 |
| 2011 |
(3)
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| 7×9 |
| 1 |
| 9×11 |
| 1 |
| 11×13 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2 |
| 1 |
| 7 |
| 1 |
| 9 |
| 1 |
| 2 |
| 1 |
| 9 |
| 1 |
| 11 |
| 1 |
| 2 |
| 1 |
| 11 |
| 1 |
| 13 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 7 |
| 1 |
| 9 |
| 1 |
| 9 |
| 1 |
| 11 |
| 1 |
| 11 |
| 1 |
| 13 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 13 |
=
| 1 |
| 2 |
| 10 |
| 39 |
=
| 5 |
| 39 |
故答案为:
| 1 |
| n×(n+1) |
点评:解答此类问题的关键是根据已知的式子总结出规律,然后用规律解答即可.
练习册系列答案
相关题目