29. 解:(1)将图1中的正方形等分成如图的四个小正方形,将这4个转发装置安装在这4个小正方形对角线的交点处,此时,每个小正方形的对角线长为,每个转发装置都能完全覆盖一个小正方形区域,故安装4个这种装置可以达到预设的要求.

····················· (3分)(图案设计不唯一)

(2)将原正方形分割成如图2中的3个矩形,使得.将每个装置安装在这些矩形的对角线交点处,设,则

,得

即如此安装3个这种转发装置,也能达到预设要求.·············································· (6分)

或:将原正方形分割成如图2中的3个矩形,使得的中点,将每个装置安装在这些矩形的对角线交点处,则,即如此安装三个这个转发装置,能达到预设要求.···················································································· (6分)

要用两个圆覆盖一个正方形,则一个圆至少要经过正方形相邻两个顶点.如图3,用一个直径为31的去覆盖边长为30的正方形,设经过交于,连,则,这说明用两个直径都为31的圆不能完全覆盖正方形

所以,至少要安装3个这种转发装置,才能达到预设要求.··································· (8分)

评分说明:示意图(图1、图2、图3)每个图1分.

 

30解:(1)

(2)设存在实数,使抛物线上有一点,满足以为顶点的三角形与等腰直角相似.

为顶点的三角形为等腰直角三角形,且这样的三角形最多只有两类,一类是以为直角边的等腰直角三角形,另一类是以为斜边的等腰直角三角形.

①若为等腰直角三角形的直角边,则

由抛物线得:

的坐标为

代入抛物线解析式,得

抛物线解析式为

②若为等腰直角三角形的斜边,

的坐标为

代入抛物线解析式,得

抛物线解析式为,即

时,在抛物线上存在一点满足条件,如果此抛物线上还有满足条件的点,不妨设为点,那么只有可能是以为斜边的等腰直角三角形,由此得,显然不在抛物线上,因此抛物线上没有符合条件的其他的点.

时,同理可得抛物线上没有符合条件的其他的点.

的坐标为,对应的抛物线解析式为时,

都是等腰直角三角形,

总满足

的坐标为,对应的抛物线解析式为时,

同理可证得:总满足

 0  433113  433121  433127  433131  433137  433139  433143  433149  433151  433157  433163  433167  433169  433173  433179  433181  433187  433191  433193  433197  433199  433203  433205  433207  433208  433209  433211  433212  433213  433215  433217  433221  433223  433227  433229  433233  433239  433241  433247  433251  433253  433257  433263  433269  433271  433277  433281  433283  433289  433293  433299  433307  447090 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网