10.(2005上海) 如图,点AB分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,

(1)求点P的坐标;

(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于,求椭圆上的点到点M的距离的最小值.

 

解:(1)由已知可得点A(-6,0),F(4,0)

设点P的坐标是,由已知得

则2x2+9x-18=0,

,  ∴P点的坐标是

(2)直线AP的方程是

设点M的坐标是(m,0),则M到直线AP的距离是

于是

椭圆上的点到点M的距离d

由于

[探索题](2006湖北)设AB分别为椭圆()的左、右顶点,椭圆长半轴的长等于焦距,且为它的右准线。

(Ⅰ)求椭圆的方程;

(Ⅱ)设P为右准线上不同于点(4,0)的任意一点,若直线APBP分别与椭圆相交于异于AB的点MN,证明点B在以MN为直径的圆内。

解(Ⅰ)依题意得  解得   从而

故椭圆方程为

(Ⅱ)解法1:由(Ⅰ)得

M点在椭圆上,①     又M点异于顶点AB

PAM三点共线可得   从而

          ②

将①式代入②式化简得

于是为锐角,从而为钝角,

故点B在以MN为直径的圆内。

解法二:由(Ⅰ)得.设,

则直线AP的方程为,直线BP的方程为

MN分别在直线APBP上,

.从而

联立消去=0

 是方程的两根,,即

于是由③、④式代入⑤式化简可得

N点在椭圆上,且异于顶点AB

从而

为钝角,即点B在以MN为直径的圆内。

解法3:由(Ⅰ)得,设

.又MN的中点Q的坐标为

化简得          ⑥

直线AP的方程为,直线BP的方程为

P在准线上,

,即

M点在椭圆上,,即             ⑧

于是将⑦、⑧式代入⑥式化简可得

从而B在以MN为直径的圆内。

 0  406616  406624  406630  406634  406640  406642  406646  406652  406654  406660  406666  406670  406672  406676  406682  406684  406690  406694  406696  406700  406702  406706  406708  406710  406711  406712  406714  406715  406716  406718  406720  406724  406726  406730  406732  406736  406742  406744  406750  406754  406756  406760  406766  406772  406774  406780  406784  406786  406792  406796  406802  406810  447090 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网