3.三角恒等式的证明

证明三角恒等式的过程,实际上是化异为同的过程,即化去形式上的异,而呈现实质上的同,这个过程,往往是从化简开始的--这就是说,在证明三角恒等式时,我们可以从最复杂处开始.

例5  求证 cosα(2secα+tgα)(secα-2tgα)=2cosα-3tgα.

分析  从复杂的左边开始证得右边.

=2cosα-3tgα=右边

例6  证明恒等式

(1)1+3sin2αsec4α+tg6α=sec6α

(2)(sinA+ secA)3+(cosA+cscA)2=(1+secAcscA)2

分析  (1)的左、右两边均较复杂,所以可以从左、右两边同时化简

证明  (1)右边-左边=sec6α-tg6α-3sin2αsec4α-1

=(sec2α-tg2α)(sec4α+sec2α·tg2α+tg2α)-3sin2αsec4α-1

=(sec4α-2sec2αtg2α+tg2α)-1

=(sec2α-tg2α)2-1=0

∴等式成立.

=sin2A+cos2A=1故原式成立

在解题时,要全面地理解“繁”与“简”的关系.实际上,将不同的角化为同角,以减少角的数目,将不同的函数名称,化为同名函数,以减少函数的种类,都是化繁为简,以上两点在三角变换中有着广泛的应用.

分析1  从右端向左端变形,将“切”化为“弦”,以减少函数的种类.

分析2  由1+2sinxcosx立即想到(sinx+cosx)2,进而可以约分,达到化简的目的.

说明  (1)当题目中涉及多种名称的函数时,常常将切、割化为弦(如解法1),或将弦化为切(如解法2)以减少函数的种类.

(2)要熟悉公式的各种变形,以便迅速地找到解题的突破口,请看下列.

=secα+tgα

∴等式成立

说明  以上证明中采用了“1的代换”的技巧,即将1用sec2α-tg2α代换,可是解题者怎么会想到这种代换的呢?很可能,解题者在采用这种代换时,已经预见到代换后,分子可以因式分解,可以约分,而所有这一切都是建立在熟悉公式的各种变形的基础上的,当然,对不熟练的解题者而言,还有如下的“一般证法”--即证明“左边-右边=0”

∴左边=右边

 0  406307  406315  406321  406325  406331  406333  406337  406343  406345  406351  406357  406361  406363  406367  406373  406375  406381  406385  406387  406391  406393  406397  406399  406401  406402  406403  406405  406406  406407  406409  406411  406415  406417  406421  406423  406427  406433  406435  406441  406445  406447  406451  406457  406463  406465  406471  406475  406477  406483  406487  406493  406501  447090 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网