摘要:15.已知各项均为正数的数列{an}的前n项和Sn满足S1>1.且6Sn=(an+1)(an+2).n∈N+. (1)求{an}的通项公式, (2)设数列{bn}满足an(2bn-1)=1.并记Tn为{bn}的前n项和.求证:3Tn+1>log2(an+3).n∈N*. (1)解:由a1=S1=(a1+1)(a1+2).解得a1=1或a1=2.由已知a1=S1>1.因此a1=2. 又由an+1=Sn+1-Sn=(an+1+1)(an+1+2)-(an+1)(an+2). 得(an+1+an)(an+1-an-3)=0. 即an+1-an-3=0或an+1=-an.因an>0.故an+1=-an不成立.舍去. 因此an+1-an=3.从而{an}是公差为3.首项为2的等差数列.故{an}的通项为an=3n-1. (2)证法一:由an(2bn-1)=1可解得 bn=log2=log2, 从而Tn=b1+b2+-+bn =log2. 因此3Tn+1-log2(an+3) =log2. 令f(n)=3·. 则=·3 =. 因(3n+3)3-(3n+5)(3n+2)2=9n+7>0.故f(n+1)>f(n). 特别地f(n)≥f(1)=>1.从而3Tn+1-log2(an+3)=log2f(n)>0.即3Tn+1>log2(an+3). 证法二:同证法一求得bn及Tn. 由二项式定理知.当c>0时.不等式(1+c)3>1+3c成立. 由此不等式有 3Tn+1=log22(1+)3(1+)3-(1+)3 >log22 =log22···-·=log2(3n+2)=log2(an+3). 证法三:同证法一求得bn及Tn. 令An=··-·.Bn=··-·. Cn=··-·. 因>>.因此A>AnBnCn=. 从而3Tn+1=log223=log22A>log22AnBnCn=log2(3n+2)=log2(an+3). 证法四:同证法一求得bn及Tn. 下面用数学归纳法证明:3Tn+1>log2(an+3). 当n=1时.3T1+1=log2.log2(a1+3)=log25. 因此3T1+1>log2(a1+3).结论成立. 假设结论当n=k时成立.即3Tk+1>log2(ak+3). 则当n=k+1时. 3Tk+1+1-log2(ak+1+3) =3Tk+1+3bk+1-log2(ak+1+3) >log2(ak+3)-log2(ak+1+3)+3bk+1 =log2. 因(3k+3)3-(3k+5)(3k+2)2=9k+7>0.故 log2>0. 从而3Tk+1+1>log2(ak+1+3).这就是说.当n=k+1时结论也成立. 综上3Tn+1>log2(an+3)对任何n∈N*成立.

网址:http://m.1010jiajiao.com/timu_id_4442875[举报]

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网