摘要:数列的有关概念, 数列的表示方法:列举法,图象法,解析法,递推法. 与的关系:.
网址:http://m.1010jiajiao.com/timu_id_4389485[举报]
定义:在数列{an}中,若an2-an-12=p,(n≥2,n∈N*,p为常数),则称{an}为“等方差数列”.下列是对“等方差数列”的有关判断:
①若{an}是“等方差数列”,则数列{
}是等差数列;
②{(-2)n}是“等方差数列”;
③若{an}是“等方差数列”,则数列{akn}(k∈N*,k为常数)也是“等方差数列”;
④若{an}既是“等方差数列”,又是等差数列,则该数列是常数数列.
其中正确的命题为
查看习题详情和答案>>
①若{an}是“等方差数列”,则数列{
| 1 | an |
②{(-2)n}是“等方差数列”;
③若{an}是“等方差数列”,则数列{akn}(k∈N*,k为常数)也是“等方差数列”;
④若{an}既是“等方差数列”,又是等差数列,则该数列是常数数列.
其中正确的命题为
③④
③④
.(写出所有正确命题的序号).定义:在数列
中,若
,(
,
,
为常数),则称
为“等方差数列”.下列是对“等方差数列”的有关判断:
①若
是“等方差数列”,则数列
是等差数列;
②
是“等方差数列”;
③若
是“等方差数列”,则数列
(
,
为常数)也是“等方差数列”;
④若
既是“等方差数列”,又是等差数列,则该数列是常数数列.
其中正确的命题为 .(写出所有正确命题的序号)
查看习题详情和答案>>
定义:在数列
中,若
,(n≥2,n∈N*,p为常数),则称
为“等方差数列”.下列是对“等方差数列”的有关判断:
①若
是“等方差数列”,则数列
是等差数列;②
是“等方差数列”;
③若
是“等方差数列”,则数列
(k∈N*,k为常数)也是“等方差数列”;
④若
既是“等方差数列”,又是等差数列,则该数列是常数数列.
其中正确的命题为 .(写出所有正确命题的序号)
查看习题详情和答案>>