摘要: 对线性规划问题:作出可行域.作出以目标函数为截距的直线.在可行域内平移直线.求出目标函数的最值.
网址:http://m.1010jiajiao.com/timu_id_4356833[举报]
(2007•杨浦区二模)(文)设F1、F2分别为椭圆C:
+
=1(m>0,n>0且m≠n)的两个焦点.
(1)若椭圆C上的点A(1,
)到两个焦点的距离之和等于4,求椭圆C的方程.
(2)如果点P是(1)中所得椭圆上的任意一点,且
•
=0,求△PF1F2的面积.
(3)若椭圆C具有如下性质:设M、N是椭圆C上关于原点对称的两点,点Q是椭圆上任意一点,且直线QM与直线QN的斜率都存在,分别记为KQM、KQN,那么KQM和KQN之积是与点Q位置无关的定值.试问:双曲线
-
=1(a>0,b>0)是否具有类似的性质?并证明你的结论.通过对上面问题进一步研究,请你概括具有上述性质的二次曲线更为一般的结论,并说明理由.
查看习题详情和答案>>
| x2 |
| m2 |
| y2 |
| n2 |
(1)若椭圆C上的点A(1,
| 3 |
| 2 |
(2)如果点P是(1)中所得椭圆上的任意一点,且
| PF1 |
| PF2 |
(3)若椭圆C具有如下性质:设M、N是椭圆C上关于原点对称的两点,点Q是椭圆上任意一点,且直线QM与直线QN的斜率都存在,分别记为KQM、KQN,那么KQM和KQN之积是与点Q位置无关的定值.试问:双曲线
| x2 |
| a2 |
| y2 |
| b2 |