摘要:2. 距离 (1)两点间距离:若.则 特别地:轴.则.轴.则. (2)平行线间距离:若. 则:.注意点:x.y对应项系数应相等. (3)点到直线的距离:.则P到l的距离为:
网址:http://m.1010jiajiao.com/timu_id_4030362[举报]
定义变换T:
可把平面直角坐标系上的点P(x,y)变换到这一平面上的点P′(x′,y′).特别地,若曲线M上一点P经变换公式T变换后得到的点P'与点P重合,则称点P是曲线M在变换T下的不动点.
(1)若椭圆C的中心为坐标原点,焦点在x轴上,且焦距为
,长轴顶点和短轴顶点间的距离为2.求该椭圆C的标准方程.并求出当
时,其两个焦点F1、F2经变换公式T变换后得到的点F1′和F2′的坐标;
(2)当
时,求(1)中的椭圆C在变换T下的所有不动点的坐标;
(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换T:
(
,k∈Z)下的不动点的存在情况和个数.
查看习题详情和答案>>
(1)若椭圆C的中心为坐标原点,焦点在x轴上,且焦距为
(2)当
(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换T:
查看习题详情和答案>>
定义变换T:
可把平面直角坐标系上的点P(x,y)变换到这一平面上的点P′(x′,y′).特别地,若曲线M上一点P经变换公式T变换后得到的点P'与点P重合,则称点P是曲线M在变换T下的不动点.
(1)若椭圆C的中心为坐标原点,焦点在x轴上,且焦距为2
,长轴顶点和短轴顶点间的距离为2.求该椭圆C的标准方程.并求出当θ=arctan
时,其两个焦点F1、F2经变换公式T变换后得到的点F1′和F2′的坐标;
(2)当θ=arctan
时,求(1)中的椭圆C在变换T下的所有不动点的坐标;
(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换T:
(θ≠
,k∈Z)下的不动点的存在情况和个数.
查看习题详情和答案>>
|
(1)若椭圆C的中心为坐标原点,焦点在x轴上,且焦距为2
| 2 |
| 3 |
| 4 |
(2)当θ=arctan
| 3 |
| 4 |
(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换T:
|
| kπ |
| 2 |
(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)
定义变换
:
可把平面直角坐标系上的点
变换到这一平面上的点
.特别地,若曲线
上一点
经变换公式
变换后得到的点
与点
重合,则称点
是曲线
在变换
下的不动点.
(1)若椭圆
的中心为坐标原点,焦点在
轴上,且焦距为
,长轴顶点和短轴顶点间的距离为2. 求该椭圆
的标准方程. 并求出当
时,其两个焦点
、
经变换公式
变换后得到的点
和
的坐标;
(2)当
时,求(1)中的椭圆
在变换
下的所有不动点的坐标;
(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换
:
(
,
)下的不动点的存在情况和个数.