ÌâÄ¿ÄÚÈÝ
¶¨Òå±ä»»T£º
|
£¨1£©ÈôÍÖÔ²CµÄÖÐÐÄÎª×ø±êԵ㣬½¹µãÔÚxÖáÉÏ£¬ÇÒ½¹¾àΪ2
| 2 |
| 3 |
| 4 |
£¨2£©µ±¦È=arctan
| 3 |
| 4 |
£¨3£©ÊÔ̽¾¿£ºÖÐÐÄÎª×ø±êԵ㡢¶Ô³ÆÖáÎª×ø±êÖáµÄË«ÇúÏßÔڱ任T£º
|
| k¦Ð |
| 2 |
·ÖÎö£º£¨1£©ÉèÍÖÔ²CµÄ±ê×¼·½³ÌΪ
+
=1£¨a£¾b£¾0£©£¬Çó³öc£¬a£¬bÈ»ºó½áºÏ¶¨Òå±ä»»T£¬Çó³öµãF1¡äºÍF2¡äµÄ×ø±ê£®
£¨2£©¦È=arctan
ʱ£¬ÀûÓã¨1£©ÖеÄÍÖÔ²CÔڱ任TÏ£¬µãP£¨x£¬y£©¡ÊC£¬¸ù¾ÝÍÖÔ²·½³ÌÇó³öµÄ²»¶¯µãµÄ×ø±ê£»
£¨3£©ÉèP£¨x£¬y£©ÊÇË«ÇúÏßÔڱ任ϵIJ»¶¯µã£¬ÍƳö
=
=
=tan
£¬ÉèË«ÇúÏß·½³ÌΪ
+
=1£¨mn£¼0£©£¬y=tan
x´úÈë£¬ÍÆ³ö
x2=1 ÌÖÂÛmn£¼0£¬¹Êµ±n+mtan2
=0ʱ£¬·½³Ì
x2=1Î޽⣻
µ±n+mtan2
¡Ù0ʱ£¬ÒªÊ¹²»¶¯µã´æÔÚ£¬ÔòÐèx2=
£¾0£¬
ÒòΪmn£¼0£¬¹Êµ±n+mtan2
£¼0ʱ£¬Ë«ÇúÏßÔڱ任TÏÂÒ»¶¨ÓÐ2¸ö²»¶¯µã£¬·ñÔò²»´æÔÚ²»¶¯µã£®
½øÒ»²½·ÖÀࣺ
£¨i£©µ±n£¼0£¬m£¾0ÏÂÒ»¶¨ÓÐ2¸ö²»¶¯µã£»
£¨ii£©µ±n£¾0£¬m£¼0ʱ£¬Ë«ÇúÏßÔڱ任TÏÂÒ»¶¨ÓÐ2¸ö²»¶¯µã£®
| x2 |
| a2 |
| y2 |
| b2 |
£¨2£©¦È=arctan
| 3 |
| 4 |
£¨3£©ÉèP£¨x£¬y£©ÊÇË«ÇúÏßÔڱ任ϵIJ»¶¯µã£¬ÍƳö
| y |
| x |
| 1-cos¦È |
| sin¦È |
| sin¦È |
| 1+cos¦È |
| ¦È |
| 2 |
| x2 |
| m |
| y2 |
| n |
| ¦È |
| 2 |
n+mtan2
| ||
| mn |
| ¦È |
| 2 |
n+mtan2
| ||
| mn |
µ±n+mtan2
| ¦È |
| 2 |
| mn | ||
n+mtan2
|
ÒòΪmn£¼0£¬¹Êµ±n+mtan2
| ¦È |
| 2 |
½øÒ»²½·ÖÀࣺ
£¨i£©µ±n£¼0£¬m£¾0ÏÂÒ»¶¨ÓÐ2¸ö²»¶¯µã£»
£¨ii£©µ±n£¾0£¬m£¼0ʱ£¬Ë«ÇúÏßÔڱ任TÏÂÒ»¶¨ÓÐ2¸ö²»¶¯µã£®
½â´ð£º½â£º£¨1£©ÉèÍÖÔ²CµÄ±ê×¼·½³ÌΪ
+
=1£¨a£¾b£¾0£©£¬
ÓÉÍÖÔ²¶¨ÒåÖª½¹¾à2c=2
?c=
£¬¼´a2-b2=2¢Ù£®
ÓÖÓÉÌõ¼þµÃa2+b2=4¢Ú£¬¹ÊÓÉ¢Ù¡¢¢Ú¿É½âµÃa2=3£¬b2=1£®
¼´ÍÖÔ²CµÄ±ê×¼·½³ÌΪ
+y2=1£®
ÇÒÍÖÔ²CÁ½¸ö½¹µãµÄ×ø±ê·Ö±ðΪF1(-
£¬0)ºÍF1(
£¬0)£®
¶ÔÓڱ任T£º
£¬µ±¦È=arctan
ʱ£¬
¿ÉµÃ
ÉèF1¡ä£¨x1£¬y1£©ºÍF2¡ä£¨x2£¬y2£©·Ö±ðÊÇÓÉF1(-
£¬0)ºÍF1(
£¬0)µÄ×ø±êÓɱ任¹«Ê½T±ä»»µÃµ½£®ÓÚÊÇ£¬
£¬¼´F1¡äµÄ×ø±êΪ(-
£¬-
)£»
ÓÖ
¼´F2¡äµÄ×ø±êΪ(
£¬
)£®
£¨2£©ÉèP£¨x£¬y£©ÊÇÍÖÔ²CÔڱ任TϵIJ»¶¯µã£¬Ôòµ±¦È=arctan
ʱ£¬
ÓÐ
?x=3y£¬ÓɵãP£¨x£¬y£©¡ÊC£¬¼´P£¨3y£¬y£©¡ÊC£¬
µÃ£º
+y2=1
£¬Òò¶øÍÖÔ²
µÄ²»¶¯µã¹²ÓÐÁ½¸ö£¬·Ö±ðΪ(
£¬
)ºÍ(-
£¬-
)£®
£¨3£©ÉèP£¨x£¬y£©ÊÇË«ÇúÏßÔڱ任
ϵIJ»¶¯µã£¬ÔòÓÉ
?
ÒòΪ¦È¡Ù
£¬k¡ÊZ£¬¹Ê
=
=
=tan
£®
²»·ÁÉèË«ÇúÏß·½³ÌΪ
+
=1£¨mn£¼0£©£¬ÓÉy=tan
x´úÈëµÃ
ÔòÓÐ
+
=1?
x2=1£¬
ÒòΪmn£¼0£¬¹Êµ±n+mtan2
=0ʱ£¬·½³Ì
x2=1Î޽⣻
µ±n+mtan2
¡Ù0ʱ£¬ÒªÊ¹²»¶¯µã´æÔÚ£¬ÔòÐèx2=
£¾0£¬
ÒòΪmn£¼0£¬¹Êµ±n+mtan2
£¼0ʱ£¬Ë«ÇúÏßÔڱ任TÏÂÒ»¶¨ÓÐ2¸ö²»¶¯µã£¬·ñÔò²»´æÔÚ²»¶¯µã£®
½øÒ»²½·ÖÀà¿ÉÖª£º
£¨i£©µ±n£¼0£¬m£¾0ʱ£¬¼´Ë«ÇúÏߵĽ¹µãÔÚ
ÖáÉÏʱ£¬?n+mtan2
£¼0?tan2
£¼-
£»
´Ëʱ˫ÇúÏßÔڱ任
ÏÂÒ»¶¨ÓÐ2¸ö²»¶¯µã£»
£¨ii£©µ±n£¾0£¬m£¼0ʱ£¬¼´Ë«ÇúÏߵĽ¹µãÔÚyÖáÉÏʱ£¬?n+mtan2
£¼0?tan2
£¾-
£¾0£®
´Ëʱ˫ÇúÏßÔڱ任TÏÂÒ»¶¨ÓÐ2¸ö²»¶¯µã£®
| x2 |
| a2 |
| y2 |
| b2 |
ÓÉÍÖÔ²¶¨ÒåÖª½¹¾à2c=2
| 2 |
| 2 |
ÓÖÓÉÌõ¼þµÃa2+b2=4¢Ú£¬¹ÊÓÉ¢Ù¡¢¢Ú¿É½âµÃa2=3£¬b2=1£®
¼´ÍÖÔ²CµÄ±ê×¼·½³ÌΪ
| x2 |
| 3 |
ÇÒÍÖÔ²CÁ½¸ö½¹µãµÄ×ø±ê·Ö±ðΪF1(-
| 2 |
| 2 |
¶ÔÓڱ任T£º
|
| 3 |
| 4 |
¿ÉµÃ
|
ÉèF1¡ä£¨x1£¬y1£©ºÍF2¡ä£¨x2£¬y2£©·Ö±ðÊÇÓÉF1(-
| 2 |
| 2 |
|
4
| ||
| 5 |
3
| ||
| 5 |
ÓÖ
|
4
| ||
| 5 |
3
| ||
| 5 |
£¨2£©ÉèP£¨x£¬y£©ÊÇÍÖÔ²CÔڱ任TϵIJ»¶¯µã£¬Ôòµ±¦È=arctan
| 3 |
| 4 |
ÓÐ
|
µÃ£º
| (3y)2 |
| 3 |
|
µÄ²»¶¯µã¹²ÓÐÁ½¸ö£¬·Ö±ðΪ(
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
£¨3£©ÉèP£¨x£¬y£©ÊÇË«ÇúÏßÔڱ任
ϵIJ»¶¯µã£¬ÔòÓÉ
|
|
ÒòΪ¦È¡Ù
| k¦Ð |
| 2 |
| y |
| x |
| 1-cos¦È |
| sin¦È |
| sin¦È |
| 1+cos¦È |
| ¦È |
| 2 |
²»·ÁÉèË«ÇúÏß·½³ÌΪ
| x2 |
| m |
| y2 |
| n |
| ¦È |
| 2 |
ÔòÓÐ
| x2 |
| m |
(tan
| ||
| n |
n+mtan2
| ||
| mn |
ÒòΪmn£¼0£¬¹Êµ±n+mtan2
| ¦È |
| 2 |
n+mtan2
| ||
| mn |
µ±n+mtan2
| ¦È |
| 2 |
| mn | ||
n+mtan2
|
ÒòΪmn£¼0£¬¹Êµ±n+mtan2
| ¦È |
| 2 |
½øÒ»²½·ÖÀà¿ÉÖª£º
£¨i£©µ±n£¼0£¬m£¾0ʱ£¬¼´Ë«ÇúÏߵĽ¹µãÔÚ
ÖáÉÏʱ£¬?n+mtan2
| ¦È |
| 2 |
| ¦È |
| 2 |
| n |
| m |
´Ëʱ˫ÇúÏßÔڱ任
ÏÂÒ»¶¨ÓÐ2¸ö²»¶¯µã£»
£¨ii£©µ±n£¾0£¬m£¼0ʱ£¬¼´Ë«ÇúÏߵĽ¹µãÔÚyÖáÉÏʱ£¬?n+mtan2
| ¦È |
| 2 |
| ¦È |
| 2 |
| n |
| m |
´Ëʱ˫ÇúÏßÔڱ任TÏÂÒ»¶¨ÓÐ2¸ö²»¶¯µã£®
µãÆÀ£º±¾Ì⿼²é½âÍÖÔ²µÄÓ¦Óã¬ÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£¬×ª»¯Ë¼Ï룬¼ÆËãÄÜÁ¦£¬·ÖÀàÌÖÂÛ˼Ï룬ÊÇÄÑÌ⣬´´ÐÂÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿