摘要: 直线与圆锥曲线的位置关系:(在这里我们把圆包括进来) (1).首先会判断直线与圆锥曲线是相交.相切.还是相离的 a.直线与圆:一般用点到直线的距离跟圆的半径相比.也可以利用方程实根的个数来判断. b.直线与椭圆.双曲线.抛物线一般联立方程.判断相交.相切.相离 c.直线与双曲线.抛物线有自己的特殊性 (2).a.求弦所在的直线方程;;b.根据其它条件求圆锥曲线方程 (3).已知一点A坐标.一直线与圆锥曲线交于两点P.Q.且中点为A.求P.Q所在的直线方程 (4).已知一直线方程.某圆锥曲线上存在两点关于直线对称.求某个值的取值范围(或者是圆锥曲线上否存在两点关于直线对称)
网址:http://m.1010jiajiao.com/timu_id_4008841[举报]
已知抛物线
,过M(a,0)且斜率为1的直线
与抛物线交于不同的两点A、B,
。
(1)求a的取值范围;
(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值。
分析:这是一道直线与圆锥曲线位置关系的问题,对于(1),可以设法得到关于a的不等式,通过解不等式求出a的范围,即“求范围,找不等式”。或者将a表示为另一个变量的函数,利用求函数的值域求出a的范围。对于(2)首先要把△NAB的面积表示为一个变量的函数,然后再求它的最大值。
查看习题详情和答案>>设点
为平面直角坐标系
中的一个动点(其中O为坐标原点),点P到定点
的距离比点P到
轴的距离大
。
(1)求点P的轨迹方程。
(2)若直线
与点P的轨迹相交于A、B两点,且
,求
的值。
(3)设点P的轨迹是曲线C,点
是曲线C上的一点,求以Q为切点的曲线C 的切线方程。
【解析】本试题主要考查了轨迹方程的求解,利用直接法设点表示轨迹方程,并能利用所求的轨迹进行直线与圆锥曲线位置关系的运用。以及导数的几何意义的运用的综合试题。
查看习题详情和答案>>
设点
为平面直角坐标系
中的一个动点(其中O为坐标原点),点P到定点
的距离比点P到
轴的距离大
。
(1)求点P的轨迹方程。
(2)若直线
与点P的轨迹相交于A、B两点,且
,求
的值。
(3)设点P的轨迹是曲线C,点
是曲线C上的一点,求以Q为切点的曲线C 的切线方程。
【解析】本试题主要考查了轨迹方程的求解,利用直接法设点表示轨迹方程,并能利用所求的轨迹进行直线与圆锥曲线位置关系的运用。以及导数的几何意义的运用的综合试题。
查看习题详情和答案>>
(1)试用x0,y0,m,n的代数式分别表示xE和xF;
(2)若C的方程为
| x2 |
| a2 |
| y2 |
| b2 |
(3)请选定一条除椭圆外的圆锥曲线C,试探究xE和xF经过某种四则运算(加、减、乘、除),其结果是否是与MN和点P位置无关的定值,写出你的研究结论并证明. 查看习题详情和答案>>
x0,y0)、M(m,n)是圆锥曲线C上不与顶点重合的任意两点,MN是垂直于x轴的一条垂轴弦,直线MP,NP分别交x轴于点E(xE,0)和点F(xF,0).
(Ⅰ)试用x0,y0,m,n的代数式分别表示xE和xF;
(Ⅱ)已知“若点P(x0,y0)是圆C:x2+y2=R2上的任意一点(
x0•y0≠0),MN是垂直于x轴的垂轴弦,直线MP、NP分别交x轴于点E(xE,0)和点F(xF,0),则xE•xF=R2”.类比这一结论,我们猜想:“若曲线C的方程为
| x2 |
| a2 |
| y2 |
| b2 |