摘要:已知数列{an}中.a1=, an+1=求a2, a3, a4.猜测通项公式an
网址:http://m.1010jiajiao.com/timu_id_3972421[举报]
已知数列{an}中,a1=1,nan+1=2(a1+a2+..+an)(n∈N*).
(1)求a2,a3,a4;
(2)求数列{an}的通项an;
(3)设数列{bn}满足b1=
,bn+1=
bn2+bn,求证:bn<1(n≤k).
查看习题详情和答案>>
(1)求a2,a3,a4;
(2)求数列{an}的通项an;
(3)设数列{bn}满足b1=
| 1 |
| 2 |
| 1 |
| ak |
已知数列{an}中,a1=
,点(n,2an+1-an)(n∈N*)在直线y=x上,
(Ⅰ)计算a2,a3,a4的值;
(Ⅱ)令bn=an+1-an-1,求证:数列{bn}是等比数列;
(Ⅲ)设Sn、Tn分别为数列{an}、{bn}的前n项和,是否存在实数λ,使得数列{
}为等差数列?若存在,试求出λ的值;若不存在,请说明理由.
查看习题详情和答案>>
| 1 |
| 2 |
(Ⅰ)计算a2,a3,a4的值;
(Ⅱ)令bn=an+1-an-1,求证:数列{bn}是等比数列;
(Ⅲ)设Sn、Tn分别为数列{an}、{bn}的前n项和,是否存在实数λ,使得数列{
| Sn+λTn |
| n |