摘要:2.设f0(x)=cosx.f1(x)=f0′(x).f2(x)=f1′(x).-.fn+1(x)=fn′(x).n∈N.则f2010(x)= ( ) A.sinx B.-sinx C.cosx D.-cosx 解析:∵f1(x)=(cosx)′=-sinx.f2(x)=(-sinx)′=-cosx.f3(x)=(-cosx)′=sinx.f4(x)=(sinx)′=cosx.-.由此可知fn(x)的值周期性重复出现.周期为4. 故f2010(x)=f2(x)=-cosx. 答案:D
网址:http://m.1010jiajiao.com/timu_id_3946348[举报]
设f0(x)=sinx,f1(x)=f0’ (x),f2(x)=f1’ (x),…,fn+1(x)=fn’(x),n∈N,则f2005(x)=
A、sinx B、-sinx C、cosx D、-cosx
查看习题详情和答案>>设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2006(x)=( )
A.sinx B.-sinx C.cosx D.-cosx
查看习题详情和答案>>
设f0(x) = sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x) = fn′(x),n∈N,则
f2005(x)=
A.sinx B.-sinx C.cosx D.-cosx
查看习题详情和答案>>