ÌâÄ¿ÄÚÈÝ
15£®| A£® | µØÇò¶Ô¡°Ì칬һºÅ¡±µÄÍòÓÐÒýÁ¦Ð¡ÓÚ¶Ô¡°ÉñÖ۰˺š±µÄÍòÓÐÒýÁ¦ | |
| B£® | ¡°Ì칬һºÅ¡±µÄÖÜÆÚСÓÚ¡°ÉñÖ۰˺š±µÄÖÜÆÚ | |
| C£® | ¡°Ì칬һºÅ¡±µÄÔËÐÐËÙÂÊСÓÚ¡°ÉñÖ۰˺š±µÄÔËÐÐËÙÂÊ | |
| D£® | ¡°ÉñÖ۰˺š±ÊʶȼÓËÙÓпÉÄÜÓë¡°Ì칬һºÅ¡±ÊµÏÖ¶Ô½Ó |
·ÖÎö Ì칬һºÅºÍÉñÖ۰˺ÅÈÆµØÇò×öÔÈËÙÔ²ÖÜÔ˶¯£¬¿¿ÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£¬¸ù¾ÝÍòÓÐÒýÁ¦¶¨ÂɺÍÅ£¶ÙµÚ¶þ¶¨ÂÉÁÐʽ±È½ÏÏßËÙ¶È¡¢ÖÜÆÚ¡¢ÏòÐļÓËٶȵĴóС
½â´ð ½â£ºA¡¢ÒòF=$G\frac{Mm}{{r}^{2}}$£¬²»ÖªÁ½ÎÀÐǵÄÖÊÁ¿´óС£¬ÔòÎÞ·¨È·¶¨Á¦µÄ´óС£¬ÔòA´íÎó
B¡¢C¸ù¾ÝÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦µÃ£¬$G\frac{Mm}{{r}^{2}}$=m$\frac{{v}^{2}}{r}$=$mr\frac{4{¦Ð}^{2}}{{T}^{2}}$ÔòµÃ£¬v=$\sqrt{\frac{GM}{r}}$£¬T=2$¦Ð\sqrt{\frac{{r}^{3}}{GM}}$£¬
¹ÊµÃÖª£¬Ì칬һºÅµÄ°ë¾¶´ó£¬ÏßËÙ¶ÈС¡¢ÖÜÆÚ´ó¡¢ÏòÐļÓËÙ¶ÈС£®¹ÊB´íÎó£¬CÕýÈ·£®
D¡¢ÉñÖ۰˺ÅÔÚ¹ìµÀÉϼÓËÙ£¬ÓÉÓÚÍòÓÐÒýÁ¦Ð¡ÓÚËùÐèµÄÏòÐÄÁ¦£¬ÉñÖ۰˺Żá×öÀëÐÄÔ˶¯£¬À뿪ԹìµÀ£¬¹ìµÀ°ë¾¶Ôö´ó£¬¿ÉÄܺÍÌ칬һºÅ¶Ô½Ó£®¹ÊDÕýÈ·£®
¹ÊÑ¡£ºCD
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÕÆÎÕÏßËÙ¶È¡¢ÖÜÆÚ¡¢ÏòÐļÓËÙ¶ÈÓë¹ìµÀ°ë¾¶µÄ¹ØÏµ£¬ÒÔ¼°ÖªµÀÉñÖ۰˺ÅÖ»ÓмÓËÙÀ뿪ԹìµÀ×öÀëÐÄÔ˶¯²Å¿ÉÄÜÓëÌ칬һºÅ¶Ô½Ó
| A£® | ÎÀÐÇÔËÐеĽÇËÙ¶ÈΪ$\frac{¦Ð}{2t}$ | B£® | µØÇòµÄÖÊÁ¿Îª$\frac{gR}{G}$ | ||
| C£® | ÎÀÐÇÔËÐеÄÏßËÙ¶ÈΪ$\frac{¦ÐR}{2t}$ | D£® | ÎÀÐÇ¾àµØÃæµÄ¸ß¶È£¨$\frac{4g{R}^{2}{t}^{2}}{{¦Ð}^{2}}$£©${\;}^{\frac{1}{3}}$ |
| A£® | ÈôСÇòÔÚ»÷ÖÐPµãʱËÙ¶ÈÓëˮƽ·½ÏòËù¼ÐÈñ½ÇΪ¦Õ£¬Ôòtan¦È=2tan¦Õ | |
| B£® | ÈôСÇòÔÚ»÷ÖÐPµãʱËÙ¶ÈÓëˮƽ·½ÏòËù¼ÐÈñ½ÇΪ¦Õ£¬Ôòtan¦Õ=2tan¦È | |
| C£® | СÇòA¡¢BÔÚ¿ÕÖÐÔ˶¯µÄʱ¼äÖ®±ÈΪ2tan2¦È£º1 | |
| D£® | СÇòA¡¢BÔÚ¿ÕÖÐÔ˶¯µÄʱ¼äÖ®±ÈΪtan2¦È£º1 |
| A£® | ÎïÌåÏÂÂä¹ý³ÌÖÐÖØÁ¦ÊÆÄÜÔö¼Ómgh | B£® | fµÄ´óСΪ$\frac{2}{3}$mg | ||
| C£® | ÎïÌåÏÂÂä¹ý³ÌÖж¯ÄÜÔö¼Ómgh | D£® | ÎïÌåÏÂÂä¹ý³ÌÖлúеÄÜÊØºã |
| A£® | ËÙ¶È | B£® | Î»ÒÆ | C£® | ¶¯Ä¦²ÁÒòÊý | D£® | Á¦ |