题目内容

12.我国月球探测计划“嫦娥工程”已经启动,科学家对月球的探索会越来越深入,2009年下半年发射了“嫦娥1号”探月卫星,2010年又发射了嫦娥2号.
若宇航员随登月飞船登陆月球后,在月球表面某处以速度v0竖直向上抛出一个小球,经过时间t,小球落回抛出点.已知月球半径为R,万有引力常量为G,若在月球表面上放射一颗环月卫星,求最小发射速度.

分析 先根据运动学公式求出月球表面的重力加速度,再求月球的第一宇宙速度即最小发射速度

解答 解:设月球表面处的重力加速度为g,竖直上抛运动的时间对称性,下落时间$\frac{t}{2}$
${v}_{0}^{\;}=g\frac{t}{2}$
得$g=\frac{2{v}_{0}^{\;}}{t}$在月球上发射一颗环月卫星,最小发射速度即第一宇宙速度
$mg=m\frac{{v}_{\;}^{2}}{R}$
解得:$v=\sqrt{gR}$=$\sqrt{\frac{2{v}_{0}^{\;}R}{t}}$
答:最小发射速度为$\sqrt{\frac{2{v}_{0}^{\;}R}{t}}$

点评 该题考查人造卫星的应用,解决本题的关键要建立模型,掌握万有引力等于重力和万有引力提供向心力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网