ÌâÄ¿ÄÚÈÝ
1£®| A£® | ÀÁ¦FµÄ´óСÊǺ㶨µÄ | |
| B£® | ÔÚ0¡«3sÄÚ£¬ÀÁ¦µÄ´óСÓëʱ¼ä³ÉÕý±È | |
| C£® | Ïß¿òµÄ±ß³¤Óë´Å³¡¿í¶ÈµÄ±ÈֵΪ1£º4 | |
| D£® | Ïß¿òÀ뿪´Å³¡ËùÓÃʱ¼äԼΪ½øÈë´Å³¡ËùÓÃʱ¼äµÄ0.5±¶ |
·ÖÎö ¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵõ½ÀÁ¦±í´ïʽ£¬·ÖÎöÀÁ¦Óëʱ¼äµÄ¹ØÏµ£»¸ù¾ÝÔȱäËÙÔ˶¯¹æÂÉÇó½âÏß¿òµÄ±ß³¤Óë´Å³¡¿í¶ÈµÄ±ÈÖµÒÔ¼°Ïß¿òÀ뿪´Å³¡ËùÓÃʱ¼ä£®
½â´ð ½â£ºAB¡¢ÉèÏß¿òµÄµç×èΪR£¬Êܵ½µÄ°²ÅàÁ¦ÎªFA£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɿɵãºF-FA=ma£¬ËùÒÔÀÁ¦F=$\frac{{B}^{2}{L}^{2}at}{R}$+ma£¬ÓÉÓÚÔȼÓËÙÔ˶¯£¬ËùÒÔÀÁ¦Ôö´ó£¬ÀÁ¦Óëʱ¼ä³ÉÏßÐÔ¹ØÏµ£¬²»ÊdzÉÕý±È£¬¹ÊAB´íÎó£»
C¡¢Ïß¿òµÄ±ß³¤Îª£ºL=$\frac{1}{2}a{t}_{1}^{2}=\frac{1}{2}a¡Á{3}^{2}$£¬´Å³¡µÄ¿í¶ÈΪ£ºd=$\frac{1}{2}a{t}_{2}^{2}=\frac{1}{2}a¡Á{6}^{2}$£¬ËùÒÔÏß¿òµÄ±ß³¤Óë´Å³¡¿í¶ÈµÄ±ÈֵΪ$\frac{L}{d}=\frac{{3}^{2}}{{6}^{2}}$=1£º4£¬¹ÊCÕýÈ·£»
D¡¢Ïß¿ò½øÈëºÍÀ뿪´Å³¡Ô˶¯µÄ¾àÀë¶¼µÈÓÚÏß¿òµÄ±ß³¤L£¬¸ù¾ÝͼÒÒ¿ÉÖªÏß¿ò½øÈë´Å³¡µÄʱ¼äΪ3s£¬ÉèÀ뿪´Å³¡µÄʱ¼äΪt£¬ÔòÓУºd+L=$\frac{1}{2}a£¨t+6£©^{2}$£¬¼´Îª£º5L=$\frac{1}{2}a{£¨t+6£©}^{2}$£¬¶øL=$\frac{1}{2}a{t}_{1}^{2}=\frac{1}{2}a¡Á{3}^{2}$£¬ÁªÁ¢½âµÃ£º$t=£¨3\sqrt{5}-6£©s¡Ö0.7s$£¬Ïß¿òÀ뿪´Å³¡ËùÓÃʱ¼äԼΪ½øÈë´Å³¡ËùÓÃʱ¼äµÄ$\frac{0.7}{3}¡Ö0.24$±¶£¬¹ÊD´íÎó£®
¹ÊÑ¡£ºC£®
µãÆÀ ±¾ÌâÖ÷ÒªÊÇ¿¼²é·¨ÀµÚµç´Å¸ÐÓ¦¶¨ÂɺÍÔȱäËÙÖ±ÏßÔ˶¯µÄ¹æÂÉ£¬¶ÔÓÚÔȱäËÙÖ±ÏßÔ˶¯µÄÔ˶¯¹æÂɼ°¸÷µ¼³ö¹«Ê½ÐèÒªÊìϤ²¢ÄÜÊìÁ·ÔËÓã®
| A£® | Æð·Éʱ×ó²à»úÒíµçÊÆ¸ß£¬½µÂäʱÓÒ²à»úÒíµçÊÆ¸ß | |
| B£® | Æð·ÉʱÓÒ²à»úÒíµçÊÆ¸ß£¬½µÂäʱ×ó²à»úÒíµçÊÆ¸ß | |
| C£® | Æð·É¡¢½µÂäʱ¶¼ÊÇ×ó²à»úÒíµçÊÆ¸ß | |
| D£® | Æð·É¡¢½µÂäʱ¶¼ÊÇÓÒ²à»úÒíµçÊÆ¸ß |
| A£® | ÀÁ¦×öµÄ¹¦W=9.25J | B£® | ͨ¹ýµç×èRµÄµçºÉÁ¿q=0.125C | ||
| C£® | Õû¸öϵͳ²úÉúµÄ×ÜÈÈÁ¿Q=5.25J | D£® | µç×èR²úÉúµÄÈÈÁ¿Q=0.125 J |
| A£® | µ¼Ìå°ôÏÈ×ö¼ÓËÙÔ˶¯£¬È»ºó×ö¼õËÙÔ˶¯ | |
| B£® | µ¼Ìå°ôÖеĵçÁ÷·½ÏòΪb¡úa | |
| C£® | µ¼Ìå°ôÔ˶¯µÄ×î´óËÙ¶Èvm=$\frac{mgRsin¦È}{{B}^{2}{L}^{2}}$ | |
| D£® | µç×è·¢ÈȵÈÓÚµ¼Ìå°ôÖØÁ¦ÊÆÄܵļõÉÙÁ¿ |
| A£® | ¶¯ÄÜΪ7.6eVµÄµç×Ó | B£® | ¶¯ÄÜΪ30.0eVµÄµç×Ó | ||
| C£® | ÄÜÁ¿Îª7.6eVµÄ¹â×Ó | D£® | ÄÜÁ¿Îª51.0eVµÄ¹â×Ó |