ÌâÄ¿ÄÚÈÝ
8£®£¨1£©ÊÔ»³ök=10ʱÁ£×ÓµÄÔ˶¯¹ì¼££®
£¨2£©ÇóÁ½´Å³¡µÄ´Å¸ÐӦǿ¶È´óСµÄ±ÈÖµ$\frac{{B}_{1}}{{B}_{2}}$£®
·ÖÎö £¨1£©¸ù¾ÝÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦Çó³ö°ë¾¶£¬»³ö¹ì¼£
£¨2£©k=4ʱÁ£×ÓÔÚÉÏÏ´ų¡ÖÐÔ˶¯µÄ¹ì¼££¬µÃµ½°ë¾¶Ö®¼äµÄ¹ØÏµ£¬´Ó¶øÇóµÃ´Å¸ÐӦǿ¶ÈÖ®±È
½â´ð ½â£º£¨1£©Á£×Ó´ÓOµã½øÈëÉÏ·½´Å³¡£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ$qvB=m\frac{{v}_{\;}^{2}}{R}$£¬µÃ$R=\frac{mv}{qB}$
ÔÚÉÏ·½´Å³¡ÖУ¬°ë¾¶${R}_{1}^{\;}=\frac{mv}{q{B}_{1}^{\;}}$=$\frac{1}{c{B}_{1}}•\frac{c{B}_{1}l}{k}$=$\frac{l}{k}$
µ±k=10ʱ£¬$v=\frac{c{B}_{1}^{\;}l}{k}=\frac{c{B}_{1}^{\;}l}{10}$
Á£×ÓÔÚÉÏ·½´Å³¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯µÄ°ë¾¶${R}_{1}^{¡ä}=\frac{mv}{q{B}_{1}^{\;}}=\frac{l}{10}$£¬¹ì¼£ÈçͼËùʾ£º![]()
£¨2£©Á£×ÓÔÚÏ·½´Å³¡ÖÐÔ˶¯Ê±£¬¹ì¼£°ë¾¶${R}_{2}^{\;}=\frac{mv}{q{B}_{2}^{\;}}$=$\frac{1}{c{B}_{2}}•\frac{c{B}_{1}l}{k}$=$\frac{{B}_{1}l}{k{B}_{2}}$£¬
ÉèÁ£×Ó³ö·¢ºó¾¹ýn¸ö°ëÔ²¹ì¼£½øÈëMNÏ·½´Å³¡£¬Óɼ¸ºÎ¹ØÏµ¿ÉµÃ4£¨n-1£©R1£¼l¡Ü4R1£¬
ÓÖ4nR1=2R2£¬
µÃ$\frac{{B}_{1}}{{B}_{2}}$=2n£¬ÎªÅ¼Êý£¬$\frac{k}{2}$¡Ü$\frac{{B}_{1}}{{B}_{2}}$£¼$\frac{k}{2}$+2£¬
ÓÉÓÚkΪżÊý£¬Ôò$\frac{{B}_{1}}{{B}_{2}}$=$\frac{k}{2}$»ò$\frac{k}{2}$+1£®
µ±kµÈÓÚ4µÄ±¶Êýʱ£¬$\frac{{B}_{1}}{{B}_{2}}$=$\frac{k}{2}$£¬
µ±k²»µÈÓÚ4µÄ±¶Êýʱ£¬$\frac{{B}_{1}}{{B}_{2}}$=$\frac{k}{2}$+1£®
´ð£º£¨1£©k=10ʱÁ£×ÓµÄÔ˶¯¹ì¼£¼ûÉÏͼ£®
£¨2£©µ±kµÈÓÚ4µÄ±¶Êýʱ£¬$\frac{{B}_{1}}{{B}_{2}}$=$\frac{k}{2}$£¬µ±k²»µÈÓÚ4µÄ±¶Êýʱ£¬$\frac{{B}_{1}}{{B}_{2}}$=$\frac{k}{2}$+1£®
µãÆÀ ±¾ÌâÌâÄ¿ÐÂÓ±£¬Óд´Ò⣬½âÌâµÄ»ù±¾Ë¼Ïë²»±ä£¬ºËÐÄÔÀíÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬Çó°ë¾¶£¬È·¶¨Ô²ÐÄ£¬»³ö¹ì¼££®
| A£® | AÖнӵÄÊǵç×裬BÖнӵÄÊǵçÈÝÆ÷ | |
| B£® | AÖнӵÄÊǵçÈÝÆ÷£¬BÖнӵÄÊǵç¸ÐÏßȦ | |
| C£® | AÖнӵÄÊǵç¸ÐÏßȦ£¬BÖнӵÄÊǵçÈÝÆ÷ | |
| D£® | AÖнӵÄÊǵç¸ÐÏßȦ£¬BÖнӵÄÊǵç×è |
| A£® | Ö§³ÖÁ¦²»×ö¹¦ | B£® | ÖØÁ¦²»×ö¹¦ | C£® | Ħ²ÁÁ¦×÷¸º¹¦ | D£® | Ç£ÒýÁ¦×öÕý¹¦ |
| A£® | ²úÉú¶àÆÕÀÕЧӦµÄÔÒòÊǹ۲ìÕßµÄÌýÁ¦²úÉú´í¾õµÄÔÒò | |
| B£® | ¶ÔÓÚÊÜÆÈÕñ¶¯£¬Çý¶¯Á¦ÆµÂÊÔ½´ó£¬ÊÜÆÈÕñ¶¯µÄÕñ·ùÒ»¶¨Ô½´ó | |
| C£® | ÔÚ¸ÉÉæÏÖÏóÖУ¬Õñ¶¯¼ÓÇ¿µãµÄÎ»ÒÆ¿ÉÄܱÈÕñ¶¯¼õÈõµãµÄÎ»ÒÆÐ¡ | |
| D£® | ÔÚµ¯»ÉÕñ×Ó×ö¼òгÔ˶¯µÄ»Ø¸´Á¦±í´ïʽF=-kxÖУ¬FΪÕñ¶¯ÎïÌåÊܵ½µÄºÏÍâÁ¦£¬kΪµ¯»ÉµÄ¾¢¶ÈϵÊý | |
| E£® | ÔÚ»úе²¨µÄ´«²¥¹ý³ÌÖУ¬ÖʵãÕñ¶¯Ò»¸öÖÜÆÚ£¬Õñ¶¯¾Í»áÔÚ½éÖÊÖÐÑØ²¨µÄ´«²¥·½Ïò´«²¥Ò»¸ö²¨³¤µÄ¾àÀë |
| A£® | $\frac{f{t}_{1}}{{m}_{1}}$ $\frac{f{t}_{1}}{{m}_{1}+{m}_{2}}$ | |
| B£® | $\frac{f{t}_{1}}{{m}_{1}+{m}_{2}}$ $\frac{f{t}_{1}}{{m}_{1}+{m}_{2}}$+$\frac{f{t}_{2}}{{m}_{2}}$ | |
| C£® | $\frac{f{t}_{1}}{{m}_{1}}$ $\frac{f£¨{t}_{1}+{t}_{2}£©}{{m}_{1}+{m}_{2}}$ | |
| D£® | $\frac{f£¨{t}_{1}+{t}_{2}£©}{{m}_{1}}$ $\frac{f£¨{t}_{1}+{t}_{2}£©}{{m}_{1}+{m}_{2}}$ |
| A£® | Êܵ½ÏòÐÄÁ¦´óСΪmg+m$\frac{{v}^{2}}{R}$ | B£® | Êܵ½Ö§³ÖÁ¦Îªmg+m$\frac{{v}^{2}}{R}$ | ||
| C£® | Êܵ½µÄĦ²ÁÁ¦Îª¦Ìmg | D£® | Êܵ½µÄĦ²ÁÁ¦Îª¦Ìm$\frac{{v}^{2}}{R}$ |