题目内容

12.拱是一种重要的力学结构,如图所示是我国古代著名的石拱桥-赵州桥的示意图,它是一块块楔形的石块叠砌而成,假设中央一块石块A所受到的重力为2000N,它的两个侧面的夹角为30°,侧面与B、C石块间摩擦不计,石块A的中央角平分线与地面相垂直,石块A上站着一个所受重力为600N的人,问这时A对两边石块的压力分别为多大?(要求在图上画出相应的受力图,sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58,sin60°=0.87,cos60°=0.5,tan60°=1.73)

分析 对人和A石块分析,受重力和两个支持力,根据平衡条件并结合正交分解法列式求解支持力,再根据牛顿第三定律得到压力大小.

解答 解:人和A石块整体受力如图所示:

竖直方向,有:2Ncos15°=G,
解得:N=$\frac{G}{2cos15°}$=$\frac{2000+600}{2×0.97}$=1340.2N
根据牛顿第三定律,这时A对两边石块的压力均为1340.2N;
答:这时A对两边石块的压力均为1340.2N.

点评 本题是三力平衡问题,关键是明确人和石块整体的受力情况,根据平衡条件列式求解.
利用正交分解方法解体的一般步骤:
①明确研究对象;
②进行受力分析;
③建立直角坐标系,建立坐标系的原则是让尽可能多的力落在坐标轴上,将不在坐标轴上的力正交分解;
④x方向,y方向分别列平衡方程求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网