题目内容

一质量为m、带电量为+q的粒子以速度v0O点沿y轴正方向射入一圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从b处穿过x轴,速度方向与x轴正方向的夹角为30°,同时进入场强大小为大小为E,方向沿x轴负方向成60°角斜向下的匀强电场中,通过了b点正下方c点,如图所示,已知 bO的距离为L,粒子的重力不计,试求:

⑴磁感应强度B

⑵圆形匀强磁场区域的最小面积;

c点到b点的距离

(1)(2)(3)


解析:

(1)粒子在磁场中受洛仑兹力作用,作匀速圆周运动,设其半径为R,据此并由题意知,粒子在磁场中的轨迹的圆心C必在x轴上,且b点在磁场区之外。过b沿速度方向作延长线,它与y轴相交于d点。作圆弧过O点与y轴相切,并且与bd相切,切点a即粒子离开磁场区的地点。这样也求得圆弧轨迹的圆心C,如图所示。

由图中几何关系得:L=3R       (3分)

由①、②求得         (3分)

(2)要使磁场的区域有最小面积,则Oa()应为磁场区域的直径,由几何关系知: 由②、④得            (3分)

∴匀强磁场的最小面积为:          (2分)

(3)带电粒子进入电场后,由于速度方向与电场力方向垂直,故做类平抛运动,由运动的合成知识有:s·sin30°=v0t(3分)    s·cos30°=at2/2 (3分)     而a=qE/m(1分)

联立解得:        (2分)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网