ÌâÄ¿ÄÚÈÝ
| mv |
| qL |
£¨1£©ÇëÔÚͼÖл³ö´øµçÁ£×ÓµÄÔ˶¯¹ì¼££¬²¢Çó³öÔÈÇ¿´Å³¡B1ÓëB2µÄ±ÈÖµ£»£¨B1¡¢B2´Å³¡×ã¹»´ó£©
£¨2£©Çó³ö´øµçÁ£×ÓÏàÁÚÁ½´Î¾¹ýPµãµÄʱ¼ä¼ä¸ôT£»
£¨3£©Èô±£³Ö´Å¸ÐӦǿ¶ÈB2²»±ä£¬¸Ä±äB1µÄ´óС£¬µ«²»¸Ä±äÆä·½Ïò£¬Ê¹B1=
| mv |
| 2qL |
| v |
| 4 |
| v |
| 3 |
£¨4£©ÈôҪʹ£¨3£©ÖÐËù˵µÄÁ½¸ö´øµçÁ£×ÓͬʱµÚÈý´Î¾¹ýÖ±ÏßAC£¬ÎÊÁ½´øµçÁ£×ÓµÚÒ»´Î´ÓPµãÉä³öʱµÄʱ¼ä¼ä¸ô¡÷tÒª¶à³¤£¿
·ÖÎö£º£¨1£©Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÁÐʽÇó½â¹ìµÀ°ë¾¶£»Õæ¿ÕÖÐ×öÔÈËÙÖ±ÏßÔ˶¯£»»³ö¹ì¼££»
£¨2£©¸ù¾Ýt=
?TºÍT=
Çó½â³öÔ²ÖÜÔ˶¯µÄʱ¼ä£¬ÔÙÇó½â³öÔÈËÙÖ±ÏßÔ˶¯µÄʱ¼äºóÏà¼Ó¼´¿É£»
£¨3£©Á£×Ó×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó½â³ö°ë¾¶Ö®¼äµÄ¹ØÏµ£¬È»ºó»³ö¶ÔÓ¦µÄ¹ì¼££¬µÃµ½EF¼ä¾à£»
£¨4£©Á½´øµçÁ£×ÓÔÚͬһ´Å³¡ÖеÄÖÜÆÚÏàͬ£¬×ª¹ýµÄÔ²ÐĽÇÒ²Ïàͬ£¬¹ÊÔÚͬһ´Å³¡ÖеÄÔ˶¯Ê±¼äÏàͬ£¬ËùÒÔʱ¼ä¼ä¸ô¡÷t¾ÍÊÇÖ±ÏßÔ˶¯µÄʱ¼ä²î£®
£¨2£©¸ù¾Ýt=
| ¦È |
| 2¦Ð |
| 2¦Ðm |
| qB |
£¨3£©Á£×Ó×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó½â³ö°ë¾¶Ö®¼äµÄ¹ØÏµ£¬È»ºó»³ö¶ÔÓ¦µÄ¹ì¼££¬µÃµ½EF¼ä¾à£»
£¨4£©Á½´øµçÁ£×ÓÔÚͬһ´Å³¡ÖеÄÖÜÆÚÏàͬ£¬×ª¹ýµÄÔ²ÐĽÇÒ²Ïàͬ£¬¹ÊÔÚͬһ´Å³¡ÖеÄÔ˶¯Ê±¼äÏàͬ£¬ËùÒÔʱ¼ä¼ä¸ô¡÷t¾ÍÊÇÖ±ÏßÔ˶¯µÄʱ¼ä²î£®
½â´ð£º
½â£º£¨1£©´øµçÁ£×Ó´ÓPµãÔÈËÙÔ˶¯µ½Qµã£¬È»ºó×÷°ë¾¶Îª£ºqvB2=m
?R2=
=LµÄÔÈËÙÔ²ÖÜÔ˶¯£¬Ô˶¯µ½HµãʱµÄËÙ¶È·½ÏòÓëAC´¹Ö±£¬´ÓHµãÔÈËÙÔ˶¯µ½Dµã£¬ºó×÷ÔÈËÙÔ²ÖÜÔ˶¯µ½Pµã£®
¸ù¾ÝÆ½Ãæ¼¸ºÎ֪ʶ¿ÉÖª£º
=
=
L£¬ËıßÐÎAODOR1RΪÀâÐΣ¬OR1RΪԲÐÄ£¬¼´´øµçÁ£×ÓÔÚÔÈÇ¿´Å³¡BR1RÖÐ×÷ÔÈËÙÔ²ÖÜÔ˶¯Ê±µÄ°ë¾¶RR1RΪ
L£¬¸ù¾ÝqvB1=m
£¬
µÃ£ºB1=
=
B2£»
£¨2£©T=t1+t2+t3+t4
t1=
£¬
t2=
T2=
£¬
t3=
£¬
t4=
T2=
½âµÃ£ºT=t1+t2+t3+t4=
£»
£¨3£©Á½´øµçÁ£×ÓÔڴų¡BR2RÖÐÔ˶¯Ê±µÄ°ë¾¶Îª£ºR¡ä2=
=
£¬
R¡å2=
=
B1=
=
£¬
¹ÊÁ£×ÓÔڴų¡BR1RÖеÄÔ˶¯°ë¾¶£º
R1=
=2R2£¬
ÔòÁ½´øµçÁ£×Ó¶¼¸ÕºÃÔ˶¯
Ô²Öܵ½´ïAµã£¬ËùÒÔEFÁ½µã¼äµÄ¾àÀëEF=0£¨ÈçͼËùʾ£©£»
£¨4£©Á½´øµçÁ£×ÓÔÚͬһ´Å³¡ÖеÄÖÜÆÚÏàͬ£¬×ª¹ýµÄÔ²ÐĽÇÒ²Ïàͬ£¬¹ÊÔÚͬһ´Å³¡ÖеÄÔ˶¯Ê±¼äÏàͬ£¬ËùÒÔʱ¼ä¼ä¸ô¡÷t¾ÍÊÇÖ±ÏßÔ˶¯µÄʱ¼ä²î£º
¡÷t=
-
=
£»
´ð£º£¨1£©´øµçÁ£×ÓµÄÔ˶¯¹ì¼£ÈçͼËùʾ£¬ÔÈÇ¿´Å³¡B1ÓëB2µÄ±ÈֵΪ
£»
£¨2£©´øµçÁ£×ÓÏàÁÚÁ½´Î¾¹ýPµãµÄʱ¼ä¼ä¸ôTΪ
£»
£¨3£©EFÁ½µã¼äµÄ¾àÀëΪ0£®
£¨4£©Á½´øµçÁ£×ÓµÚÒ»´Î´ÓPµãÉä³öʱµÄʱ¼ä¼ä¸ô¡÷tΪ
£®
| v2 |
| R2 |
| mv |
| qB2 |
¸ù¾ÝÆ½Ãæ¼¸ºÎ֪ʶ¿ÉÖª£º
. |
| PO |
. |
| OD |
| 2 |
| 2 |
| v2 |
| R1 |
µÃ£ºB1=
| ||
| 2qL |
| ||
| 2 |
£¨2£©T=t1+t2+t3+t4
t1=
| L |
| v |
t2=
| 3 |
| 8 |
| 3¦ÐL |
| 4v |
t3=
| L |
| v |
t4=
| 5 |
| 8 |
5
| ||
| 4v |
½âµÃ£ºT=t1+t2+t3+t4=
(8+3¦Ð+5
| ||
| 4v |
£¨3£©Á½´øµçÁ£×ÓÔڴų¡BR2RÖÐÔ˶¯Ê±µÄ°ë¾¶Îª£ºR¡ä2=
m
| ||
| qB2 |
| L |
| 4 |
R¡å2=
m
| ||
| qB2 |
| L |
| 3 |
B1=
| mv |
| 2qL |
| B2 |
| 2 |
¹ÊÁ£×ÓÔڴų¡BR1RÖеÄÔ˶¯°ë¾¶£º
R1=
| mv |
| qB1 |
ÔòÁ½´øµçÁ£×Ó¶¼¸ÕºÃÔ˶¯
| 1 |
| 4 |
£¨4£©Á½´øµçÁ£×ÓÔÚͬһ´Å³¡ÖеÄÖÜÆÚÏàͬ£¬×ª¹ýµÄÔ²ÐĽÇÒ²Ïàͬ£¬¹ÊÔÚͬһ´Å³¡ÖеÄÔ˶¯Ê±¼äÏàͬ£¬ËùÒÔʱ¼ä¼ä¸ô¡÷t¾ÍÊÇÖ±ÏßÔ˶¯µÄʱ¼ä²î£º
¡÷t=
L+
| ||
|
L+
| ||
|
| 2L |
| v |
´ð£º£¨1£©´øµçÁ£×ÓµÄÔ˶¯¹ì¼£ÈçͼËùʾ£¬ÔÈÇ¿´Å³¡B1ÓëB2µÄ±ÈֵΪ
| ||
| 2 |
£¨2£©´øµçÁ£×ÓÏàÁÚÁ½´Î¾¹ýPµãµÄʱ¼ä¼ä¸ôTΪ
(8+3¦Ð+5
| ||
| 4v |
£¨3£©EFÁ½µã¼äµÄ¾àÀëΪ0£®
£¨4£©Á½´øµçÁ£×ÓµÚÒ»´Î´ÓPµãÉä³öʱµÄʱ¼ä¼ä¸ô¡÷tΪ
| 2L |
| v |
µãÆÀ£º±¾Ìâ¹Ø¼üÃ÷È·Á£×ÓµÄÔ˶¯ÐÔÖÊ£¬»³öÔ˶¯¹ì¼££¬È»ºó·ÖÔÈËÙÔ²ÖÜÔ˶¯ºÍÖ±ÏßÔ˶¯½×¶ÎÌÖÂÛ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿