题目内容
3.请导出天体运动过程中的线速度v,角速度ω,周期T和轨道半径r的关系式.分析 天体绕中心天体做圆周运动,靠万有引力提供向心力,结合向心力与线速度、角速度、周期、向心加速度的关系求出线速度、角速度、周期、向心加速度的表达式.
解答 解:把天体的运动看作是匀速圆周运动,所需的向心力由万有引力提供.
根据$G\frac{Mm}{{r}^{2}}=m\frac{{v}^{2}}{r}$得,v=$\sqrt{\frac{GM}{r}}$;
根据$G\frac{Mm}{{r}^{2}}=mr{ω}^{2}$得,$ω=\sqrt{\frac{GM}{{r}^{3}}}$;
根据$G\frac{Mm}{{r}^{2}}=mr\frac{4{π}^{2}}{{T}^{2}}$得,T=$\sqrt{\frac{4{π}^{2}{r}^{3}}{GM}}$;
由a=$\frac{F}{m}$及F=G$\frac{Mm}{{r}^{2}}$解得a=$\frac{GM}{{r}^{2}}$.
答:天体运动过程中的线速度v,角速度ω,周期T和轨道半径r的关系式分别为:v=$\sqrt{\frac{GM}{r}}$;ω=$\sqrt{\frac{GM}{{r}^{3}}}$;T=$\sqrt{\frac{4{π}^{2}{r}^{3}}{GM}}$.
点评 解决本题的关键掌握万有引力提供向心力这一重要理论,知道线速度、角速度、周期、向心加速度与轨道半径的关系.
练习册系列答案
相关题目
14.在匀强磁场中,一矩形金属线框绕与磁感线垂直的转动轴匀速转动,如图甲所示,产生的交变电动势随时间变化的规律如图乙所示,则下列说法正确的是 ( )

| A. | t=0.01s时穿过线框的磁通量最小 | |
| B. | t=0.01s时穿过线框的磁通量变化率最大 | |
| C. | 该线框匀速转动的角速度大小为50π | |
| D. | 电动势瞬时值为22V时,线圈平面与中性面的夹角为45° |
11.
如图所示,自水平地面上方高h处以速度v0水平抛出一小球,小球到达地面时速度与水平方向的夹角为θ.将小球移至高2h处,以速度v水平抛出,小球到达地面时速度与水平方向的夹角也为θ,不计空气阻力,则v与v0的关系为( )
| A. | v=2v0 | B. | v=$\sqrt{2}$v0 | C. | v=$\frac{\sqrt{2}}{2}$v0 | D. | v=$\frac{1}{2}$v0 |
4.
光滑斜面与光滑水平面成60°角连接,质量为m的两小球A、B用长度为l的轻杆相连,A球置于斜面与水平面的连接点,B置于斜面上,如图所示.现将整体由静止释放,则当A、B的动能相等时,速度大小为( )
| A. | $\sqrt{\frac{1}{2}gl}$ | B. | $\sqrt{\frac{\sqrt{3}}{2}gl}$ | C. | $\sqrt{\frac{\sqrt{3}-1}{2}gl}$ | D. | $\sqrt{gl}$ |
11.科学家分析,随着地球上各地地震、海啸的不断发生,会导致地球的自转变快,理论分析,下列说法正确的是( )
| A. | “天宫一号”飞行器的高度不变 | B. | 地球赤道上物体的重力会略变大 | ||
| C. | 同步卫星的高度要略调低一点 | D. | 地球的第一宇宙速度将略变小 |
8.若两颗绕太阳运行的行星的质量分别为m1和m2,它们绕太阳运行的轨道半径分别为r1和r2,则它们的向心加速度之比为( )
| A. | 1:1 | B. | m2r1:m1r2 | C. | m1r22:m2r12 | D. | r22:r12 |
9.下列关于匀速圆周运动的说法中正确的是( )
| A. | 做匀速圆周运动的物体速度保持不变 | |
| B. | 做匀速圆周运动的物体的加速度为零 | |
| C. | 任意相等的时间里通过的位移相同 | |
| D. | 任意相等的时间里通过的弧长相等 |