题目内容

1.一质量为0.2kg的弹性小球,在光滑的水平面上以5m/s的速度垂直撞到墙上,碰撞后小球沿相反方向弹回,反弹后的速度大小与碰撞前的速度大小相等,则碰撞前后小球速度变化量的大小△v和碰撞过程中墙对小球所做的功W为(  )
A.W=0,△v=10m/sB.W=5J,△v=10m/sC.W=5J,△v=0D.W=0,△v=0m/s

分析 速度是矢量,根据△v=v2-v1求解速度的变化量,根据动能定理求出墙对小球做功的大小.

解答 解:规定反弹速度方向为正方向,则有:
△v=v2-v1=5-(-5)m/s=10m/s.
根据动能定理得:
W=$\frac{1}{2}m{v}_{2}^{2}-\frac{1}{2}m{v}_{1}^{2}$=$\frac{1}{2}×0.2×({5}^{2}-{5}^{2})$=0
故A正确,BCD错误.
故选:A

点评 解决本题的关键知道速度是矢量,功是标量,求解速度变化量需注意方向,求解动能的变化量不需要注意方向.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网