ÌâÄ¿ÄÚÈÝ
16£®ÈçͼËùʾ£¬´Å¸ÐӦǿ¶È´óС¾ùΪBµÄ×ã¹»´óÔÈÇ¿´Å³¡·ÖΪÉÏÏÂÁ½ÇøÓò£¬±ß½ç¾ùÑØË®Æ½·½Ïò£¬Á½Æ½Ðб߽ç¼äµÄ¾àÀëΪd£®ÏÖÓÐÒ»´øµçÁ¿Îª-qµÄÁ£×Ó¡²²»¼ÆÖØÁ¦£©ÒÔËÙ¶Èv´Óϱ߽çÉϵÄOµãÑØÓë±ß½ç³É30¡ã½ÇµÄ·½ÏòбÏòÓÒÉÏ·½Éä³ö£¬ÒÑÖªÁ£×ÓµÄÖÊÁ¿m=$\frac{2qBd}{v}$£®Ç󣺣¨1£©Á£×ÓµÚÒ»´Î»Øµ½Ï´ų¡±ß½çÏßʱÓëOµã¼äµÄ¾àÀ룻
£¨2£©´ÓOµãÉä³ö¿ªÊ¼¼ÆÊ±£¬µ½Á£×ÓµÚn´Î½øÈëÏ´ų¡Çø³ÇËùÐèʱ¼ä£®
·ÖÎö £¨1£©¸ù¾ÝÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬½áºÏÅ£¶ÙµÚ¶þ¶¨ÂÉ£¬ÇóµÃ¹ìµÀ°ë¾¶£¬ÔÙ½áºÏÔ˶¯¹ì¼££¬¼°¼¸ºÎ¹ØÏµ£¬¼´¿ÉÇó½â£»
£¨2£©¸ù¾ÝÔ˶¯Ñ§¹«Ê½£¬ÏÈÇóµÃ´ÓÀ뿪ÏÂÃæ´Å³¡µ½»Øµ½ÏÂÃæ´Å³¡µÄʱ¼ä£¬ÔÙ½áºÏÔÈËÙÔ²ÖÜÔ˶¯£¬ÇóµÃ»Øµ½ÏÂÃæ´Å³¡µ½À뿪ÏÂÃæ´Å³¡µÄʱ¼ä£¬´Ó¶ø¼´¿ÉÇó½â£®
½â´ð ½â£º£¨1£©Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ£¬ÓУº
qvB=m$\frac{{v}^{2}}{r}$
½âµÃ£º
r=$\frac{mv}{qB}$=$\frac{\frac{2qBd}{v}v}{qB}$=2d
»³ö¹ì¼££¬ÈçͼËùʾ£º![]()
µÚÒ»´Î»Øµ½ÏÂÃæ´Å³¡µÄµãÓëOµãµÄ¾àÀëΪ£º
x=£¨$\frac{d}{tan30¡ã}$+rsin30¡ã£©¡Á2=2£¨$\sqrt{3}$+1£©d
£¨2£©´ÓÀ뿪ÏÂÃæ´Å³¡µ½»Øµ½ÏÂÃæ´Å³¡
t1=$\frac{2d}{v}$¡Á2+$\frac{\frac{¦Ðr}{3}}{v}$=$\frac{4d}{v}$+$\frac{2¦Ðd}{3v}$
»Øµ½ÏÂÃæ´Å³¡µ½À뿪ÏÂÃæ´Å³¡¹ý³Ì£¬Á£×Ó×öÔÈËÙÔ²ÖÜÔ˶¯£¬¹Ê£º![]()
ʱ¼äΪ£ºt2=$\frac{\frac{3¦Ðr}{3}}{v}$=$\frac{10¦Ðd}{3v}$
¹Ê´ÓµÚÒ»´ÎÀ뿪ÏÂÃæ´Å³¡µ½µÚn´Î»Øµ½ÏÂÃæ´Å³¡¹ý³ÌµÄʱ¼äΪ£º
t=nt1+£¨n-1£©t2=$\frac{4nd}{v}$£¨1+¦Ð-$\frac{¦Ð}{6n}$£©
´ð£º£¨1£©Á£×ÓµÚÒ»´Î»Øµ½Ï´ų¡±ß½çÏßʱÓëOµã¼äµÄ¾àÀë2£¨$\sqrt{3}$+1£©d£»
£¨2£©´ÓOµãÉä³ö¿ªÊ¼¼ÆÊ±£¬µ½Á£×ÓµÚn´Î½øÈëÏ´ų¡Çø³ÇËùÐèʱ¼ä$\frac{4nd}{v}$£¨1+¦Ð-$\frac{¦Ð}{6n}$£©£®
µãÆÀ ¿¼²éÅ£¶ÙµÚ¶þ¶¨ÂÉÓëÔ˶¯Ñ§¹«Ê½µÄÓ¦Óã¬ÕÆÎÕ¼¸ºÎ¹ØÏµ£¬×¢ÒâÕýÈ·×÷³öÔ˶¯¹ì¼£ÊǽâÌâµÄ¹Ø¼ü£¬²¢Àí½âÔÈËÙÔ²ÖÜÔ˶¯µÄÖÜÆÚ¹«Ê½£®
| A£® | ¸Ä±äµçÁ÷·½Ïòͬʱ¸Ä±ä´Å³¡·½Ïò£¬µ¼Ìå°ô°Ú¶¯·½Ïò½«»á¸Ä±ä | |
| B£® | ½ö¸Ä±äµçÁ÷·½Ïò»òÕß½ö¸Ä±ä´Å³¡·½Ïò£¬µ¼Ìå°ô°Ú¶¯·½ÏòÒ»¶¨¸Ä±ä | |
| C£® | Ôö´óµçÁ÷ͬʱ¸Ä±ä½ÓÈëµ¼Ìå°ôÉϵÄϸµ¼Ïߣ¬½ÓͨµçԴʱ£¬µ¼Ìå°ô°Ú¶¯·ù¶ÈÒ»¶¨Ôö´ó | |
| D£® | ½öÄõôÖмäµÄ´ÅÌú£¬µ¼Ìå°ô°Ú¶¯·ù¶È²»±ä |
| A£® | µØÇòÉϵÄÎïÌå¾ùÊܵ½ÖØÁ¦×÷Óà | |
| B£® | ͬһÎïÌåÔÚij´¦ÏòÉÏÅ׳öºóºÍÏòÏÂÅ׳öºóËùÊÜÖØÁ¦²»Ò»Ñù´ó | |
| C£® | ijÎïÌåÔÚͬһλÖÃʱ£¬ËùÊÜÖØÁ¦µÄ´óСÓëÎïÌå¾²Ö¹»¹ÊÇÔ˶¯ÎÞ¹Ø | |
| D£® | ÎïÌåËùÊÜÖØÁ¦´óСÓëÆäÖÊÁ¿ÓÐ¹Ø |