题目内容
4.| A. | 作用于棒ab上的各力的合力所做的功等于电阻R上产生的焦耳热 | |
| B. | 恒力F和重力的合力所做的功等于电阻R上产生的焦耳热 | |
| C. | 恒力F和安培力的合力所做的功等于零 | |
| D. | 恒力F所做的功等于棒ab重力势能的增加量和电阻R上产生的焦耳热之和 |
分析 题中导体棒ab匀速上滑,合力为零,即可合力的做功为零;对导体棒正确受力分析,根据动能定理列方程,弄清功能转化关系,注意克服安培力所做功等于回路电阻中产生的热量.
解答 解:A、金属棒向上匀速运动,合力为零,故在金属棒上升的过程中作用于金属棒上的各力的合力所做的功等于零,故A错误;
B、金属棒受重力、恒力F以及安培力,合力做功为零,而上升过程中重力做负功,根据动能定理得:WF+WG+W安=0,得WF+WG=-W安,克服安培力做的功等于电阻R上产生的焦耳热,故B正确;
C、金属棒受重力、恒力F以及安培力,合力做功为零,而上升过程中重力做负功,根据动能定理得:WF+WG+W安=0,得WF+W安=-WG,故恒力F与安培力的合力所做的功等于克服重力做功,故C错误;
D、根据动能定理得:WF+WG+W安=0,得WF=-WG-W安,克服重力做的功-WG等于棒ab重力势能的增加量,克服安培力所做功-W安即等于回路电阻中产生的热量,故有恒力F所做的功等于棒ab重力势能的增加量和电阻R上产生的焦耳热之和,故D正确;
故选:BD.
点评 对于电磁感应与功能结合问题,注意利用动能定理进行判断各个力做功之间关系,尤其注意的是克服安培力所做功等于整个回路中产生热量.
练习册系列答案
相关题目
8.
两个小木块B、C中间夹着一根轻弹簧,将弹簧压缩后用细线将两个木块绑在一起,使它们一起在光滑水平面上沿直线运动,这时它们的运动图线如图中a线段所示,在t=4s末,细线突然断了,B、C都和弹簧分离后,运动图线分别如图中b、c线段所示.下面说法正确的是( )
| A. | 木块B、C都和弹簧分离后的运动方向相反 | |
| B. | 木块B、C都和弹簧分离后,系统的总动能增大 | |
| C. | 木块B、C分离过程中B木块的动量变化较大 | |
| D. | 木块B的质量是木块C质量的四分之一 |
12.如图甲所示,abcd是位于竖直平面内的正方形闭合金属线框,在金属线框的下方有一磁感应强度为B的匀强磁场区域,MN和M′N′是匀强磁场区域的水平边界,两边界的距离为s,并与线框的bc边平行,磁场方向与线框平面垂直.现让金属线框由距MN的某一高度从静止开始下落,图乙是金属线框由开始下落到完全穿过匀强磁场区域的v-t图象(其中OA、BC、DE相互平行).已知金属线框的边长为L(L<s)、质量为m,电阻为R,当地的重力加速度为g,图象中坐标轴上所标出的字母v1、v2、t1、t2、t3、t4均为已知量.下落过程中bc边始终水平,根据题中所给条件,以下说法正确的是

| A. | t2是线框全部进入磁场瞬间,t4是线框全部离开磁场瞬间 | |
| B. | 从bc边进入磁场起一直到ad边离开磁场为止,感应电流所做的功为mgs | |
| C. | v1的大小一定为$\frac{mgR}{{B}^{2}{L}^{2}}$ | |
| D. | 线框离开磁场过程中流经线框横截面的电荷量和线框进入磁场过程中流经线框横截面的电荷量一样多 |
13.
如图所示,汽车向右沿水平面作匀速直线运动,通过绳子提升重物M.若不计绳子质量和绳子与滑轮间的摩擦,则在提升重物的过程中,下列有关判断正确的是( )
| A. | 重物M匀速上升 | B. | 重物减速上升 | ||
| C. | 绳子张力大于M的重力 | D. | 地面对汽车的支持力增大 |