ÌâÄ¿ÄÚÈÝ

6£®ÈçͼËùʾ£¬Ò»°ë¾¶ÎªRµÄÔ²±íʾһÖùÐÎÇøÓòµÄ½ØÃ棬ԲÐÄ×ø±êΪ£¨0£¬R£©£¬ÔÚÖùÐÎÇøÓòÄÚ¼ÓÒ»·½Ïò´¹Ö±Ö½ÃæÏòÀ´Å¸ÐӦǿ¶ÈΪBµÄÔÈÇ¿´Å³¡£¬Ôڴų¡ÓÒ²àÓÐһƽÐÐÓÚxÖá·ÅÖÃµÄÆ½ÐнðÊô°åMºÍN£¬Á½°å¼ä¾àºÍ°å³¤¾ùΪ2R£¬ÆäÖнðÊô°åNÓëxÖáÖØºÏÇҽӵأ¬Ò»ÖÊÁ¿Îªm£¬µçºÉÁ¿Îª-qµÄ´øµçÁ£×Ó£¬ÓÉ×ø±êÔ­µãOÔÚÖ½ÃæÄÚÒÔÏàͬµÄËÙÂÊ£¬Ñز»Í¬µÄ·½ÏòÉäÈëµÚÒ»ÏóÏÞºó£¬Éä³ö´Å³¡Ê±Á£×ӵķ½Ïò¶¼Æ½ÐÐÓÚxÖᣬ²»¼ÆÖØÁ¦£¬Çó£º
£¨1£©´øµçÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄËÙ¶È´óС£»
£¨2£©´ÓOµãÉäÈë´Å³¡Ê±µÄËÙ¶ÈÇ¡ÓëxÖá³É¦È=60¡ã½ÇµÄ´øµçÁ£×ÓÉä³ö´Å³¡Ê±µÄλÖÃ×ø±ê£»
£¨3£©ÈôʹµÚ£¨2£©ÎÊÖеÄÁ£×ÓÄܹ»´ÓƽÐаåµçÈÝÆ÷Éä³ö£¬MµÄµçÊÆ·¶Î§¶à´ó£¿

·ÖÎö Á£×ÓÔÚÔ²Ðδų¡ÇøÓòµÄÔ˶¯£¬±¾À´¾ÍÊDZȽϸ´ÔÓµÄÇé¿ö£¬¹Ø¼üÊÇÉä³ö´Å³¡Ê±Á£×ӵķ½Ïò¶¼Æ½ÐÐÓÚxÖᣬ´Ó´Ëµã³ö·¢¿ÉÒÔÕÒµ½½âÌâÔ¿³×£®
£¨1£©¸ù¾ÝÁ½Ô²ÏཻµÄ¼¸ºÎ¹æÂÉ£¬¿ÉÒÔÈ·¶¨Á£×ӵĹìµÀ°ë¾¶µÈÓÚÔ²Ðδų¡ÇøÓòµÄ°ë¾¶£¬ÓÉÂåÂØ×ÈÁ¦ÌṩÏòÁ¦´Ó¶øÇó³öÁ£×ÓµÄËÙ¶È£®
£¨2£©ÒÔ60¡ãÈëÉäµÄÁ£×Ó£¬»®¹ý°ë¾¶ÎªRµÄ»¡ºó´ÓÔ²Ðα߽çÉä³ö£¬Óɼ¸ºÎ¹ØÏµÇó³ö½»µã×ø±êÒ²²»ºÜÄÑ£®
£¨3£©Á£×ÓÆ½ÐÐÉä³ö´¹Ö±½øÈëµç³¡ºóÒªÄÜÉä³öµç³¡ÇøÓò£¬Ö»ÄÜ´ÓÉÏ¡¢Ï°åµÄ±ßÔµ¼«¶ËÇé¿öÈ¥¿¼ÂÇ£¬ÓÉ×öÀàÆ½Å׵ĹæÂɺÍÅ£¶ÙµÚ¶þ¶¨ÂÉ£ºÏÈÇó³ö×î´ó¼ÓËÙ¶È´Ó¶øÔÙÇó³öM°åµÄ×î´óµçÊÆ£®

½â´ð ½â£º£¨1£©Á£×ÓÒÔÓëxÖá³ÉÈÎÒâ½Ç¦ÈÉäÈëÔ²Ðδų¡£¬Ô˶¯¹ì¼£ÈçͼËùʾ
Óɼ¸ºÎ¹ØÏµ¿ÉÖª£¬¹ì¼£Ô²ÐÄO'£¬³öÉäµãPÓëO'£®OºÍO1¹¹³ÉÁâÐΣ¬Òò´ËÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄ¹ì¼£°ë¾¶ÎªR£¬
ÓÉÅ£¶ÙµÚ¶þ¶¨Âɿɵãº
$qvB=m\frac{v^2}{R}$
½âµÃ£º$v=\frac{qBR}{m}$
£¨2£©ÉèÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄʱ¼äΪt£¬Ôò£º
$t=\frac{¦ÈR}{v}=\frac{¦Ðm}{3qB}$£¬
ÈçͼËùʾ£¬Éä³ö´Å³¡µÄλÖÃ×ø±êΪ£º
$x=Rsin¦È=\frac{{\sqrt{3}}}{2}R$
$y=R£¨1-cos¦È£©=\frac{1}{2}R$
¼´Éä³ö´Å³¡µÄλÖÃ×ø±êΪ$£¨\frac{{\sqrt{3}}}{2}R£¬\frac{1}{2}R£©$
£¨3£©ÉèÁ£×ÓÔÚÁ½°å¼äÔ˶¯µÄʱ¼äΪt£¬Ôò£º
$t=\frac{2R}{v}=\frac{2m}{qB}$
ÉèÁ£×Ó´Ó°åÓÒ²àÉä³öʱ²àÏòÎ»ÒÆÎªd£¬Á½¼«°å¼äµç³¡Ç¿¶ÈΪE£¬Ôò£º
$d=\frac{1}{2}a{t^2}$       
qE=ma
¹Ê½âµÃ£º$E=\frac{{q{B^2}d}}{2m}$
µ±Á£×Ó´ÓN°åÓÒ²à±ßÔµÉä³öʱ£¬
${d_1}=\frac{1}{2}R$£¬
Ôò£º${U_{NM1}}={E_1}•2R=\frac{{q{B^2}{R^2}}}{2m}$
¹ÊMµãµÄµçÊÆ ${¦Õ_{M1}}=-\frac{{q{B^2}{R^2}}}{2m}$
µ±Á£×Ó´ÓM°åµÄÓÒ²à±ßÔµÉä³öʱ
${d_2}=\frac{3}{2}R$
Ôò${U_{M2N}}={E_2}•2R=\frac{{3q{B^2}{R^2}}}{2m}$
¹ÊMµãµÄµçÊÆ ${¦Õ_{M2}}=\frac{{3q{B^2}{R^2}}}{2m}$
ËùÒÔÁ£×ÓÄܹ»´ÓƽÐаåµÄÓÒ¶ËÉä³ö£¬M°åµÄµçÊÆ·¶Î§Îª$-\frac{{q{B^2}{R^2}}}{2m}¡Ü{¦Õ_M}¡Ü\frac{{3q{B^2}{R^2}}}{2m}$
´ð£º£¨1£©´øµçÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄËÙ¶È´óСΪ$\frac{qBv}{m}$£®
£¨2£©´ÓOµãÉäÈë´Å³¡Ê±µÄËÙ¶ÈÇ¡ÓëxÖá³É¦È=60¡ã½ÇµÄ´øµçÁ£×ÓÉä³ö´Å³¡Ê±µÄλÖÃ×ø±êΪ$£¨\frac{\sqrt{3}}{2}R£¬\frac{1}{2}R£©$£®
£¨3£©ÈôʹµÚ£¨2£©ÎÊÖеÄÁ£×ÓÄܹ»´ÓƽÐаåµçÈÝÆ÷Éä³ö£¬MµÄµçÊÆ·¶Î§¶à´ó$-\frac{q{B}^{2}{R}^{2}}{2m}¡Ü{¦Õ}_{M}¡Ü\frac{3q{B}^{2}{R}^{2}}{2m}$£®

µãÆÀ ±¾ÌâµÄ¿´µãÔÚÓÚÁ£×ÓÔÚÔ²Ðδų¡ÇøÓòÄÚÔ˶¯ºó£¬ÑØÆ½ÐÐÓÚxÖá´¹Ö±½øÈëÔÈÇ¿µç³¡£¬ÕÒµ½Á£×ÓÔ²ÖÜÔ˶¯µÄ°ë¾¶Êǹؼü£®ÕâÀïÉæ¼°µ½Êýѧ¼¸ºÎ¹ØÏµ--ÁâÐΡ¢Ô²¡¢×ø±êµÈ¶¼ÊÇÊýѧµÄÄѵ㣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø