ÌâÄ¿ÄÚÈÝ
18£®£¨1£©ÓüýÍ·ÔÚͼÉϱê³ö¸Ãµç³¡µÄ·½Ïò£¬²¢¼òҪ˵Ã÷ÅжÏ˼·£®
£¨2£©ÓÃÌâÖÐËù¸øµÄl¡¢m¡¢q¡¢v0À´±íʾ¸Ãµç³¡µÄ³¡Ç¿E£®
£¨3£©ÓÃÌâÖÐËù¸øµÄl¡¢m¡¢q¡¢v0À´±íʾ¸Ãµç³¡ÖÐABÁ½µã¼äµÄµçÊÆ²îUAB£®
£¨4£©ÉèÁ£×ÓÔÚBµãʱµÄËÙ¶È·½ÏòÓëˮƽ·½ÏòµÄ¼Ð½ÇΪ¦Á£¬ÔòÇó³ötan¦ÁµÄ¾ßÌåÊýÖµ£®
·ÖÎö Á£×ÓÔڵ糡ÖÐ×öÀàÆ½Å×Ô˶¯£¬½áºÏ´øµçÁ£×ÓÔÚˮƽ·½ÏòºÍÊúÖ±·½ÏòÉϵÄÔ˶¯¹æÂÉÇó³öABÁ½µãµÄµç³¡Ç¿¶È£¬ÒÔ¼°¸ù¾ÝÔÈÇ¿µç³¡µÄµçÊÆ²îµÄ¹«Ê½Çó³öA¡¢BÁ½µãµÄµçÊÆ²î£®Í¨¹ýÁ£×ӵĵçÐÔÅжϵ糡ǿ¶ÈµÄ·½Ïò£¬´Ó¶øÈ·¶¨A¡¢BÁ½µãµçÊÆµÄ¸ßµÍ£®
½â´ð ½â£º£¨1£©ÒòÁ£×Ó´ø¸ºµçÇÒÏòÏÂÆ«×ª£¬¹Êµç³¡Á¦·½ÏòÏòÏ£¬ËùÒԵ糡·½ÏòÊúÖ±ÏòÉÏ£®
£¨2£©ÉèÁ£×ӵļÓËÙ¶ÈΪa£¬´ÓAµ½BµÄÔ˶¯Ê±¼äÊÇt£¬Ôò
ˮƽ·½ÏòÔÈËÙÔ˶¯£¬ÓÐlcos¦È=v0t ¢Ù
ÊúÖ±·½Ïò×öÔȼÓËÙÔ˶¯£¬ÓÐ lsin¦È=$\frac{1}{2}a{t}^{2}$ ¢Ú
ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵãºqE=ma ¢Û
½âµÃµç³¡Ç¿¶È E=$\frac{2m{v}_{0}^{2}sin¦È}{qlco{s}^{2}¦È}$=$\frac{2\sqrt{2}m{v}_{0}^{2}}{ql}$ ¢Ü
£¨3£©ÓÉÔÈÇ¿µç³¡µÄ³¡Ç¿ÓëµçÊÆ²îµÄ¹ØÏµ¿ÉµÃ£ºuAB=-Elsin¦È ¢Ý
½áºÏ¢Ü¢ÝʽµÃµçÊÆ²îΪ-${U}_{AB}=\frac{2m{v}_{0}^{2}si{n}^{2}¦È}{qco{s}^{2}¦È}$ Ôò ${U}_{AB}=\frac{2m{v}_{0}^{2}}{q}$
£¨4£©ÓÉÀàÆ½Å×Ô˶¯ÖÐËÙ¶ÈÆ«½ÇÓëÎ»ÒÆÆ«½ÇµÄ¹ØÏµ¿ÉÖª£ºtan¦Á=2tan¦È=2tan45¡ã=2
´ð£º£¨1£©1£©µç³¡·½ÏòÊúÖ±ÏòÉÏ
£¨2£©µç³¡µÄ³¡Ç¿EΪ $\frac{2\sqrt{2}m{v}_{0}^{2}}{ql}$£®
£¨3£©ABÁ½µã¼äµÄµçÊÆ²îUABΪ$\frac{2m{v}_{0}^{2}}{q}$
£¨4£©tan¦ÁµÄ¾ßÌåÊýֵΪ2£®
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÕÆÎÕ´¦ÀíÀàÆ½Å×Ô˶¯µÄ·½·¨£¬½áºÏÅ£¶ÙµÚ¶þ¶¨ÂÉ¡¢Ô˶¯Ñ§¹«Ê½£¬×¥×¡µÈʱÐÔ½øÐÐÇó½â£¬ÄѶȲ»´ó£®
| A£® | ÖÊµã¡¢Î»ÒÆ¶¼ÊÇÀíÏ뻯ģÐÍ | |
| B£® | Å£¶ÙµÚÒ»¶¨ÂÉ¡¢Å£¶ÙµÚ¶þ¶¨Âɶ¼¿ÉÒÔͨ¹ýʵÑéÀ´ÑéÖ¤ | |
| C£® | µ¥Î»m¡¢kg¡¢sÊÇÒ»×éÊôÓÚ¹ú¼Êµ¥Î»ÖƵĻù±¾µ¥Î» | |
| D£® | ºú¿ËÈÏΪֻÓÐÔÚÒ»¶¨µÄÌõ¼þÏ£¬µ¯»ÉµÄµ¯Á¦²ÅÓ뵯»ÉµÄÐαäÁ¿³ÉÕý±È |
| A£® | $\frac{U_1}{I_1}$ | B£® | $\frac{U_2}{I_2}$ | C£® | $\frac{U_3}{I_3}$ | D£® | $\frac{{{U_2}-{U_1}}}{I_1}$ |
| A£® | µâ131µÄ°ëË¥ÆÚÊÇ8.4Ì죬8.4Ììºó£¬µâ131µÄ°ëË¥ÆÚ¼õΪ4.2Ìì | |
| B£® | ï¤137·øÉä³öµÄ¦ÃÉäÏߵĹᴩ±¾Áì±È¦ÁÉäÏßÇ¿ | |
| C£® | ·´Ó¦¶ÑÖÐîÐÁѱäµÄ·½³Ìʽ¿ÉÒÔдΪ${\;}_{94}^{239}$Pu¡ú${\;}_{38}^{87}$Sr+${\;}_{56}^{137}$Ba+15${\;}_{0}^{1}$n | |
| D£® | ÖØºËÁÑ±ä´æÔÚÖÊÁ¿¿÷Ëð£¬ÇáºËÁѱäÓëÖ®Ïà·´ |
| A£® | µÚ¶þ´ÎСÇòÔ˶¯¾Àúʱ¼ä¸ü³¤ | |
| B£® | µÚÒ»´ÎСÇòÔ˶¯Ëٶȱ仯¸ü¿ì | |
| C£® | µÚ¶þ´ÎСÇòµ½´ïBµãµÄËٶȸü´ó | |
| D£® | Á½ÖÖÇé¿öСÇòµ½´ïBµãµÄËÙ¶È·½ÏòÏàͬ |