ÌâÄ¿ÄÚÈÝ
7£®£¨Ìáʾ£ºÔÚÔÈÖÊÇò²ãµÄ¿ÕÇ»ÄÚ£¬ÈÎÒâλÖõÄÖʵãÊܵ½Çò¿ÇµÄÍòÓÐÒýÁ¦ÎªÁ㣩
Ç󣺢ٴËÐÇÇò±íÃæº£Ë®µÄÖÊÁ¿Ô¼Îª¶àÉÙ£¿£¨ÓÃR¡¢¦Ñ¡¢h×Öĸ±íʾ£©
¢Ú´ËÐÐÐDZíÃæ´¦µÄ×ÔÓÉÂäÌå¼ÓËÙ¶ÈԼΪ¶àÉÙ£¿
·ÖÎö £¨1£©ÏÈÇóº£Ë®Ìå»ý£¬ÔÙ¸ù¾Ým=¦ÑVÇóÖÊÁ¿
£¨2£©¸ù¾ÝÍòÓÐÒýÁ¦µÈÓÚÖØÁ¦ÇóÐÇÇò±íÃæ×ÔÓÉÂäÌå¼ÓËÙ¶È
½â´ð ½â£º£¨1£©ÁîR¡¢${R}_{0}^{\;}$·Ö±ð±íʾ´ËÐÇÇò£¨°üÀ¨º£Ñ󣩼°ÐÇÇòÄڲ㣨³ý±í²ãº£ÑóÍ⣩µÄ°ë¾¶£¬r±íʾº£ÑóÄÚÈÎÒâÒ»µãAµ½ÐÇÇòÖÐÐĵľàÀ룬Ôò
${R}_{0}^{\;}¡Ür¡ÜR$
ÇÒ${R}_{\;}^{\;}={R}_{0}^{\;}+h$
ÉèÐÇÇòµÄ×ÜÖÊÁ¿ÎªM£¬Ë®µÄÃܶÈΪ¦Ñ£¬ÓÉÓÚhԶСÓÚR£®ËùÒÔÐÇÇò±íÃæº£ÑóµÄ×ÜÖÊÁ¿¿É±íʾΪ
$m=4¦Ð{R}_{0}^{2}h¦Ñ¡Ö4¦Ð{R}_{\;}^{2}h¦Ñ$
£¨2£©ÓÉ$G\frac{Mm}{{R}_{\;}^{2}}=m{g}_{±í}^{\;}$µÃ${g}_{±í}^{\;}=\frac{GM}{{R}_{\;}^{2}}$
$G\frac{£¨M-m£©m}{{R}_{0}^{2}}=m{g}_{0}^{\;}$µÃ${g}_{0}^{\;}=\frac{G£¨M-m£©}{{R}_{0}^{2}}$
ÒÀÌâÒ⣺${g}_{±í}^{\;}={g}_{0}^{\;}$£¬¼´£º$\frac{M}{{R}_{\;}^{2}}=\frac{£¨M-m£©}{{R}_{0}^{2}}=\frac{£¨M-m£©}{£¨R-h£©_{\;}^{2}}•M$=$\frac{{R}_{\;}^{2}m}{2Rh-{h}_{\;}^{2}}$
Ôò${g}_{±í}^{\;}=\frac{G¡Á4¦Ð{¦Ñ}_{Ë®}^{\;}{R}_{\;}^{2}h}{{R}_{\;}^{2}•2h}=2¦ÐG{¦Ñ}_{Ë®}^{\;}R$
½«$G=6.67¡Á1{0}_{\;}^{-11}N•{m}_{\;}^{2}/k{g}_{\;}^{2}$£¬${¦Ñ}_{Ë®}^{\;}=1.0¡Á1{0}_{\;}^{3}kg/{m}_{\;}^{3}$£¬$R=6.4¡Á1{0}_{\;}^{6}m$´úÈëµÃ£º${g}_{±í}^{\;}=2.7m/{s}_{\;}^{2}$
´ð£º¢Ù´ËÐÇÇò±íÃæº£Ë®µÄÖÊÁ¿Ô¼Îª$4¦Ð{R}_{\;}^{2}h¦Ñ$
¢Ú´ËÐÐÐDZíÃæ´¦µÄ×ÔÓÉÂäÌå¼ÓËÙ¶ÈԼΪ$2.7m/{s}_{\;}^{2}$
µãÆÀ ½â±¾ÌâµÄ¹Ø¼ü¾ÍÔÚÓÚÊ×ÏÈÒª½¨Á¢ÖÐÐÄÌìÌåºÍÔ˶¯ÎÀÐÇ£¬²ÅÄÜÔËÓûù±¾·½³ÌʽÇóÐÐÐDZíÃæ´¦µÄ×ÔÓÉÂäÌå¼ÓËÙ¶È£¬Èô°ÑË®ÊÓΪÔ˶¯ÎÀÐÇȺ£¬Ôò¹Ø¼üÊÇÈçºÎÇóÖÐÐÄÌìÌåµÄÖÊÁ¿£®
| A£® | ´¬ÔÚ¿¿°¶Ç°×öµÄÊÇÔȱäËÙÔ˶¯ | |
| B£® | ´¬ÔÚ¿¿°¶Ç°µÄÔ˶¯¹ì¼£ÊÇÖ±Ïß | |
| C£® | µ±ÉþÓëºÓ°¶µÄ¼Ð½ÇΪ¦Áʱ£¬´¬µÄËÙÂÊΪvcos¦Á | |
| D£® | µ±ÉþÓëºÓ°¶µÄ¼Ð½ÇΪ¦Áʱ£¬´¬µÄËÙÂÊΪ$\frac{v}{cos¦Á}$ |
| A£® | Á½¸ö»¥³É½Ç¶È£¨²»¹²Ïߣ©µÄÔȱäËÙÖ±ÏßÔ˶¯µÄºÏÔ˶¯Ò»¶¨ÊÇÔȱäËÙÖ±ÏßÔ˶¯ | |
| B£® | ÔÈËÙÔ²ÖÜÔ˶¯ÊǼÓËٶȲ»±äµÄÇúÏßÔ˶¯ | |
| C£® | Å£¶ÙÒÔÌìÌåÖ®¼äÆÕ±é´æÔÚ×ÅÒýÁ¦ÎªÒÀ¾Ý£¬ÔËÓÃÑÏÃܵÄÂß¼ÍÆÀí£¬½¨Á¢ÁËÍòÓÐÒýÁ¦¶¨Âɲ¢²â¶¨ÁËÍòÓÐÒýÁ¦³£Á¿G | |
| D£® | µØÇòÈÆÌ«Ñô¹«×ªÔ˶¯¹ìµÀ°ë¾¶RµÄÈý´Î·½ÓëÆäÖÜÆÚTµÄƽ·½Ö®±ÈΪ³£Êý£¬¼´$\frac{{R}^{3}}{{T}^{2}}$=k£¬ÄÇôkµÄ´óСֻÓëÌ«ÑôµÄÖÊÁ¿Óйأ¬ÓëµØÇòµÄÖÊÁ¿ÎÞ¹Ø |
| A£® | ÓÐʯÓͻᵼÖÂPµãÖØÁ¦¼ÓËÙ¶ÈÆ«Ð¡ | |
| B£® | ÓÐʯÓͻᵼÖÂPµãÖØÁ¦¼ÓËÙ¶ÈÆ«´ó | |
| C£® | ÔÚͼÖÐPµãÖØÁ¦¼ÓËÙ¶È·´³£Öµ´óÓÚQµãÖØÁ¦¼ÓËÙ¶È·´³£Öµ | |
| D£® | QµãÖØÁ¦¼ÓËÙ¶È·´³£ÖµÔ¼Îª¡÷g=$\frac{G¦ÑVd}{£¨{d}^{2}+{x}^{2}£©^{\frac{3}{2}}}$ |