题目内容
19.下列说法正确的是( )| A. | 太阳辐射能量与目前核电站发电的能量均来自核聚变反应 | |
| B. | 1g 铀238经过一个半衰期后铀238的质量变为0.5g | |
| C. | 一个氢原子从n=4的激发态跃迁到基态时,能辐射6种不同频率的光子 | |
| D. | 按照玻尔理论,氢原子核外电子从半径较小的轨道跃迁到半径较大的轨道时,电子的动能减小,原子能量增加 | |
| E. | 康普顿效应说明光具有粒子性,电子的衍射实验说明粒子具有波动性 |
分析 太阳辐射的能量来自轻核聚变,核电站发电的能量来自重核裂变;经过一个半衰期有半数发生衰变;一个氢原子从n=4能级跃迁,可能从n=4跃迁到n=3,再从n=3跃迁到n=2,再从n=2跃迁到n=1,最多只能辐射3种频率的光子;根据电子轨道半径的变化,结合库仑引力提供向心力分析电子动能的变化;康普顿效应说明光具有粒子性,电子的衍射实验说明粒子具有波动性.
解答 解:A、太阳辐射的能量来自轻核聚变,核电站发电的能量来自重核裂变,故A错误.
B、经过一个半衰期有半数发生衰变,1g 铀238经过一个半衰期后铀238的质量变为0.5g,故B正确.
C、一个氢原子从n=4的激发态跃迁到基态时,最多只能辐射3种频率的光子,若是一群氢原子,能辐射6种不同频率的光子,故C错误.
D、氢原子核外电子从半径较小的轨道跃迁到半径较大的轨道时,原子能量增加,根据$k\frac{{e}^{2}}{{r}^{2}}=m\frac{{v}^{2}}{r}$知,电子的动能减小,故D正确.
E、康普顿效应说明光具有粒子性,电子的衍射实验说明粒子具有波动性,故E正确.
故选:BDE.
点评 本题考查了重核裂变、轻核聚变、半衰期、能级跃迁、波粒二象性等基础知识点,关键要熟悉教材,牢记这些基本概念和基本规律,不能混淆.
练习册系列答案
相关题目
10.
如图1所示,长木板A放在光滑的水平面上,质量为m=2kg的另一物体B(可视为质点)以水平速度v0=2m/s滑上原来静止的长木板A的上表面,由于A、B间存在摩擦,之后A、B速度随时间变化情况如图2所示,已知当地的重力加速度g=10m/s2.则下列说法正确的是( )
| A. | 木板获得的动能为2 J | B. | 系统损失的机械能为2 J | ||
| C. | 木板A的最短长度为1.5 m | D. | A、B间的动摩擦因数为0.2 |
7.
如图是远距离输电线路的示意图,T1、T2为理想变压器,T1的输人电压随时间的变化系为μ=220$\sqrt{2}$sin100πt(V),Ro为输电线总电阻,则下列说法中正确的是( )
| A. | 通过负载的交流电周期为0.025s | |
| B. | 开关K接通比断开时单位时间内输电线的能量损耗大 | |
| C. | 若T1和T2的匝数比分别为1:4和4:1,则负载中额定电压为220V的灯泡能正常发光 | |
| D. | 电能输送过程中损耗的电能与输送电的平方成正比 |
14.
如图所示,平行金属板a和b水平放置,接入电路,两板的中央分别有一个小孔,S闭合在P点有一个带正电荷的小球从P点开始自由下落,先后穿过两个小孔.若穿出b板上的孔时,小球的速度为v.下列选项可以让小球穿出b板上的孔时的速度大于v的是( )
| A. | 只将滑动变阻器的滑片向右移动 | B. | 只将滑动变阻器的滑片向左移动 | ||
| C. | 只将a极向上运动 | D. | 只将b板向下运动 |
4.
如图所示,将一个小球从M点以初速度vM竖直向上抛出,小球运动过程中还受到恒定的水平作用力,从M点运动到N点时,小球的速度方向恰好改变了90°,则在从M点到N点的运动过程中,小球的速率( )
| A. | 先减小后增大 | B. | 先增大后减小 | C. | 一直增大 | D. | 一直减小 |
11.
如图所示,电源电动势为E,内电阻为r.理想电压表V1、V2示数为 U1、U2,其变化量的绝对值分别为△U1和△U2;流过电源的电流为I,其变化量的绝对值为△I.当滑动变阻器的触片从右端滑到左端的过程中(灯泡电阻不变化)( )
| A. | 小灯泡L3变暗,L1、L2变亮 | B. | △U1<△U2 | ||
| C. | $\frac{△{U}_{1}}{△I}$不变 | D. | $\frac{△{U}_{2}}{△I}$不变 |
8.
科学家预测银河系中所有行星的数量大概在2万亿-3万亿之间.日前在银河系发现一颗类地行星,半径是地球半径的两倍,质量是地球质量的三倍.卫星a、b分别绕地球、类地行星做匀速圆周运动,它们距中心天体表面的高度均等于地球的半径.则卫星a、b的( )
| A. | 线速度之比为1:$\sqrt{3}$ | B. | 角速度之比为3:$2\sqrt{2}$ | ||
| C. | 周期之比为$2\sqrt{2}$:$\sqrt{3}$ | D. | 加速度之比为4:3 |