题目内容

16.为了演示大气压随高度而变化的现象,某同学采用了如图所示的装置,图中A为保温瓶(容积为2.5L),B为橡皮塞,C为长约30cm的直角转弯玻璃管(横截面积为0.125cm2),d是一小段有颜色的水柱,手持保温瓶,尽量让玻璃管保持水平,当人由下蹲变为站立再将双手举起的过程中,管中水柱会有比较明显外移,从而显示了大气压随高度而变化的现象.
(1)当该同学拿着保温瓶上楼时,发现每上一层楼,水柱在水平管内都会移动相同的距离,由此他判断出地面附近的大气压随高度h的变化最接近图(b)中的B(只需填字母,并设地面大气压为760mmHg)

(2)若将玻璃管管口略向下倾斜,大气压随高度h的变化最接近图A.

分析 (1)“每上一层楼,水柱在水平管内都会向外移动相同的距离”其中向外说明封闭气体体积增大,等温变化,根据玻意而定律可知压强减小
(2)封闭气体等温变化,根据玻意而定律得:(P0-△h)V0=(P-△h)(V0+n△V),即:$P=\frac{{P}_{0}-△h}{{V}_{0}+n△V}+△h={P}_{0}-\frac{{P}_{0}-△h}{1+\frac{{V}_{0}}{n△V}}$,公式后半部分减小,所以P比水平放置是增大一点,故图象接近倾斜直线,故选A.

解答 解:(1))“每上一层楼,水柱在水平管内都会向外移动相同的距离”其中向外说明封闭气体体积增大,等温变化,根据玻意而定律可知压强减小
设每上一层,体积增加△V
由玻意而定律得:P0V0=P(V0+n△V)即:$P=\frac{{P}_{0}{V}_{0}}{{V}_{0}+n△V}={P}_{0}-\frac{{P}_{0}}{1+\frac{{V}_{0}}{n△V}}$,其中h与n成正比,故ACD错误,B正确;
故选:B.
(2)若将玻璃管管口略向下倾斜,内外气压不在相等,但压强差为一定值即△P=△h,△h为水柱长度,
根据玻意而定律得:(P0-△h)V0=(P-△h)(V0+n△V),即:$P=\frac{{P}_{0}-△h}{{V}_{0}+n△V}+△h={P}_{0}-\frac{{P}_{0}-△h}{1+\frac{{V}_{0}}{n△V}}$,公式后半部分减小,所以P比水平放置是增大一点,故图象接近倾斜直线,故选A.
故答案为:A.

点评 解决本题的关键是抓住封闭气体做等温变化,而且发现每上一层楼,水柱在水平管内都会移动相同的距离,根据玻意而定律列式求出压强与高度的关系式即可确定其图象关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网