题目内容

19.如图是高层建筑配备的救生缓降器,由调速器、安全带、安全钩、钢丝绳等组成,是供普通家庭和个人使用的自救器材.发生火灾时,使用者先将安全钩挂在室内窗户、管道等可以承重的物体上,然后将安全带系在人体腰部,从窗户缓缓降到地面.
在一次消防演练中,演习者被困在公寓的第24层楼的房间内,通过救生缓降器进行自救,开始下滑的位置离地面72m,要求他离地面高6.1m后,要以1m/s的速度匀速着地.演习者调节调速器先加速下滑一段时间后再减速下滑,刚好按要求到达地面.已知演习者的质量为60kg,加速时加速度最大可达到6m/s2,减速时加速度最大允许值为5m/s2,g=10m/s2.要求演习者以最短时间滑到地面.忽略空气阻力.求:
(1)演习者加速下滑通过的距离;
(2)整个过程中,演习者克服钢丝绳拉力所做的功.

分析 (1)当演习者以最大加速度加速下滑,又以最大加速度减速下滑时,时间最短,根据运动学基本公式求出演习者加速下滑通过的距离;
(2)整个过程中,根据动能定理列式求解演习者克服钢丝绳拉力所做的功.

解答 解:(1)当演习者以最大加速度加速下滑,又以最大加速度减速下滑时,时间最短,设匀加速运动的时间为t1,匀减速运动的时间为t2,最大速度为v,
则有${t}_{1}=\frac{v}{{a}_{1}}=\frac{v}{6}$,${t}_{2}=\frac{v-1}{{a}_{2}}=\frac{v-1}{5}$,
根据位移时间公式得:$h-h′=\frac{v}{2}•{t}_{1}+\frac{v+1}{2}•{t}_{2}$
带入数据得:72-6.1=$\frac{v}{2}×\frac{v}{6}+\frac{v+1}{2}•\frac{v-1}{5}$
解得:v=$\sqrt{360}$m/s
根据2a${x}_{1}={v}^{2}$
得:演习者加速下滑通过的距离${x}_{1}=\frac{360}{2×6}=30m$
(2)整个过程中,根据动能定理得:
$\frac{1}{2}mv{′}^{2}-0=mgh-W$
解:W=$60×10×72-\frac{1}{2}×60×1=43170J$
答:(1)演习者加速下滑通过的距离为30m;
(2)整个过程中,演习者克服钢丝绳拉力所做的功为43170J.

点评 本题主要考查了运动学基本公式以及动能定理的直接应用,知道当演习者以最大加速度加速下滑,又以最大加速度减速下滑时,时间最短,可以画出速度-时间图象,根据图象的意义求解,难度适中.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网