题目内容
15.(1)写出实验原理;
(2)根据提供的实验器材,画出实验装置图;
(3)写出实验步骤,并写明需要测量的物理量及计算g的公式.
分析 根据运动学位移与时间公式,结合平均速度的公式$\overline{v}$=$\frac{s}{t}$,及图象的斜率含义,即可求出当地的重力加速度.
解答 解:(1)实验原理:
小球做初速度为零的匀加速直线运动,
由h=$\frac{1}{2}$gt2得:$\overline{v}$=$\frac{h}{t}$=$\frac{1}{2}$gt,
作$\overline{v}$-t图象,根据图线斜率k可求的重力加速度g=2k
(2)实验步骤:A.如图所示安装实验器材;![]()
B.释放小球,记录小球从第一光电门下落到第二光电门之间的高度h和所用时间t,并填入设计好的表格中.
C.改变第二个光电门的位置,多次重复实验步骤B.
D.根据实验数据作出$\overline{v}$-t图象,并由此图象求得重力加速度.根据图线斜率k可求的重力加速度g=2k.
(3)方法一:固定上下光电门,测钢球通过两光电门时间,求出$\overline{v}$,
由$\overline{v}={v}_{0}+\frac{g{t}_{i}}{2}=\sqrt{2g{h}_{1}}+\frac{g{h}_{2}}{2\overline{v}}$求得:g=2${\overline{v}}^{2}$($\sqrt{{h}_{1}+{h}_{2}}-\sqrt{{h}_{1}}$)2$\frac{1}{{h}_{2}^{2}}$.
其中h1为钢球到上面光电门的距离.
方法二:固定上面的光电门,每移动一次下面的光电门,测钢球通过两光电门时间ti,
由$\overline{v}=\frac{{h}_{2}}{{t}_{i}}={v}_{0}+\frac{g{t}_{i}}{2}$,作出$\overline{v}$-t图,
由斜率求出g,其中h2为两光电门之间的距离.
答:(1)实验原理为自由落体规律.
(2)见右图.
(3)如上所述.
点评 利用光电计时器测量重力加速度这个实验属于教材的栏目“做一做”中,由此可知,对于教材上的这类拓展性实验,准备参加自主招生的学生,有做一做的必要.另外,此题属于开放性探究题,在平时的实验教学中,实验原理、实验步骤大多都是教师讲授给学生的,而此题中实验原理、实验步骤是需要考生自己思考的.由此,对于想要参加自主招生的考生,有必要增强实验探究的自主性.
| A. | 卫星B的运动速度vB=$\sqrt{\frac{gR}{2}}$ | |
| B. | 卫星B的周期TB=2π$\sqrt{\frac{2R}{g}}$ | |
| C. | A的轨道半径r=$\root{3}{\frac{{g}^{2}{R}^{2}{T}^{2}}{4{π}^{2}}}$ | |
| D. | 每经过时间$\frac{4πT\sqrt{2R}}{T\sqrt{g}-4π\sqrt{2R}}$A与B之间的距离再次最小 |