题目内容

5.某同学用图(a)所示的实验装置验证机械能守恒定律,其中打点计时器的电源为交流电源,可以使用的频率有20Hz、30Hz和40Hz.打出纸带的一部分如图(b)所示.

该同学在实验中没有记录交流电的频率f,需要用实验数据和其它题给条件进行推算.
(1)若从打出的纸带可判定重物匀加速下落,利用f和图(b)中给出的物理量可以写出:在打点计时器打出B点时,重物下落的速度大小为$\frac{1}{2}$(s1+s2)f,打出C点时重物下落的速度大小为$\frac{1}{2}$(s2+s3),重物下落的加速度大小为$\frac{1}{2}$(s3-s1)f2
(2)已测得s1=8.89cm,s2=9.50cm,s3=10.10cm;当重力加速度大小为9.80m/s2,实验中重物受到的平均阻力大小约为其重力的1%.由此推算出f为40 Hz.

分析 (1)根据某段时间内的平均速度等于中间时刻的瞬时速度求出B和C点的瞬时速度,利用速度公式求加速度;
(2)利用牛顿第二定律和解出的加速度求频率.

解答 解:(1)根据某段时间内的平均速度等于中间时刻的瞬时速度可得:vB=$\frac{{s}_{1}+{s}_{2}}{2T}$=$\frac{1}{2}$(s1+s2)f;
vC=$\frac{{s}_{3}+{s}_{2}}{2T}$=$\frac{1}{2}$(s2+s3)f;
由速度公式vC=vB+aT可得:a=$\frac{1}{2}$(s3-s1)f2
(2)由牛顿第二定律可得:mg-0.01mg=ma,所以a=0.99g,结合(1)解出的加速度表达式,代入数据可得:
f2=$\frac{2a}{({s}_{3}-{s}_{1})}$=2×$\frac{0.99g}{0.1010-0.0889}$
解得:f=40Hz.
故答案为:(1)$\frac{1}{2}$(s1+s2)f; $\frac{1}{2}$(s2+s3)f; $\frac{1}{2}$(s3-s1)f2  (2)40

点评 解决本题的关键掌握纸带的处理方法,会通过纸带求解瞬时速度的大小,关键是匀变速直线运动推论的运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网