ÌâÄ¿ÄÚÈÝ
5£®| A£® | Ôڵ糡ÖеļÓËÙ¶ÈÖ®±ÈΪ1£º1 | B£® | À뿪µç³¡ÇøÓòʱµÄ¶¯ÄÜÖ®±ÈΪ1£º3 | ||
| C£® | Ôڴų¡ÖÐÔ˶¯µÄʱ¼äÖ®±ÈΪ3£º2 | D£® | Ôڴų¡ÖÐÔ˶¯µÄ°ë¾¶Ö®±ÈΪ1£º$\sqrt{3}$ |
·ÖÎö Òª·ÖÎö¼ÓËٶȾÍÒªÏÈ·ÖÎöÆäÊܵĵ糡Á¦£¬¶øÒª·ÖÎö¶¯ÄܾÍÒª¿´µç³¡×öµÄ¹¦£»Òª·ÖÎö°ë¾¶¾ÍÒªÓÃÂåÂ××ÈÁ¦³äµ±ÏòÐÄÁ¦£¬À´ÕÒ³ö°ë¾¶£¬¸ù¾Ý¼¸ºÎ¹ØÏµ¼´¿ÉÇó³ö¶ÔÓ¦µÄÔ²ÐĽǣ¬´Ó¶øÇó³ö¶ÔÓ¦µÄʱ¼ä£®
½â´ð ½â£ºA¡¢Á½¸öÀë×ÓµÄÖÊÁ¿Ïàͬ£¬Æä´øµçÁ¿ÊÇ1£º3µÄ¹ØÏµ£¬ËùÒÔÓÉa=$\frac{qU}{md}$¿ÉÖª£¬ÆäÔڵ糡ÖеļÓËÙ¶ÈÊÇ1£º3£¬¹ÊA´íÎó£®
B¡¢Óɵ糡¼ÓËÙºó£ºqU=$\frac{1}{2}$mv2¿ÉÖª£¬Á½Àë×ÓÀ뿪µç³¡µÄ¶¯ÄÜÖ®±ÈΪ1£º3£¬¹ÊBÕýÈ·£®
C¡¢¸ù¾ÝB¿ÉÖªÀ뿪µç³¡Ê±ÆäËٶȱí´ïʽΪ£ºv=$\sqrt{\frac{2qU}{m}}$£¬¿ÉÖªÆäËÙ¶ÈÖ®±ÈΪ1£º$\sqrt{3}$£®ÓÖÓÉqvB=m$\frac{{v}^{2}}{r}$Öª£¬r=$\frac{mv}{qB}$£¬ËùÒÔÆä°ë¾¶Ö®±ÈΪ$\sqrt{3}$£º1£»Éè´Å³¡¿í¶ÈΪL£¬Àë×Óͨ¹ý´Å³¡×ª¹ýµÄ½Ç¶ÈµÈÓÚÆäÔ²ÐĽǣ¬ËùÒÔÓÐsin¦È=$\frac{L}{R}$£¬Ôò¿ÉÖª½Ç¶ÈµÄÕýÏÒÖµÖ®±ÈΪ1£º$\sqrt{3}$£¬ÓÖP+µÄ½Ç¶ÈΪ30¡ã£¬¿ÉÖªP3+½Ç¶ÈΪ60¡ã£¬¼´Ôڴų¡ÖÐת¹ýµÄ½Ç¶ÈÖ®±ÈΪ1£º2£¬Á£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄÖÜÆÚ£ºT=$\frac{2¦Ðm}{qB}$£¬¶øÔ˶¯Ê±¼ät=$\frac{¦È}{2¦Ð}T$£¬¹Ê$\frac{{t}_{1}}{{t}_{2}}$=$\frac{\frac{{¦È}_{1}m}{{q}_{1}B}}{\frac{{¦È}_{2}m}{{q}_{2}B}}$=$\frac{{¦È}_{1}{q}_{2}}{{¦È}_{2}{q}_{1}}$=$\frac{30}{60}¡Á\frac{3}{1}$=$\frac{3}{2}$£¬¹ÊCÕýÈ·£¬D´íÎó£»
¹ÊÑ¡£ºBC£®
µãÆÀ ´Å³¡ÖеÄÔ²ÖÜÔ˶¯ÎÊÌâÖØµãÊÇÒªÕÒ³ö°ë¾¶£¬È»ºóͨ¹ýºÏÀíµÄ×÷ͼ»³öÁ£×ÓµÄÔ˶¯¹ì¼££¬»ù±¾¾Í¿ÉÒÔ½â¾öÎÊÌâÁË£¬´Å³¡ÖеĹ켣ÎÊÌâÊǸ߿¼Ìرðϲ»¶¿¼²éµÄÄÚÈÝ£¬¶øÇÒ¶¼Êdzö´óÌ⣬Ӧ¸Ã¶à×öѵÁ·£®
| A£® | ¼ô¶Ï×ó²àϸÏß˲¼ä£¬aÇò¼ÓËÙ¶È´óСΪ2g | |
| B£® | ¼ô¶Ï×ó²àϸÏß˲¼ä£¬bÇò¼ÓËÙ¶È´óСΪ0 | |
| C£® | ¼ô¶Ï×ó²àϸÏß˲¼ä£¬bÇò¼ÓËÙ¶È´óСΪ$\frac{1}{2}$g | |
| D£® | ¼ô¶Ïµ¯»É×îÓÒ²à˲¼ä£¬aÇò¼ÓËÙ¶È´óСΪ0 |
| A£® | OµãÓëNµã¼äµÄµçÊÆ²îΪÁã | B£® | OµãÓëNµã¼äµÄµçÊÆ²îΪ$\frac{m£¨vsin{¦È£©}^{2}}{q}$ | ||
| C£® | NµãÒ»¶¨ÔÚOµÄ×óÉÏ·½ | D£® | NµãÒ»¶¨ÔÚOµãµÄÓÒÉÏ·½ |
| A£® | Ò»Ö±×ö×ÔÓÉÂäÌåÔ˶¯ | |
| B£® | ÏÈ×ö×ÔÓÉÂäÌåÔ˶¯£¬ºó×ö¼õËÙÔ˶¯ | |
| C£® | È«¹ý³ÌÊܵ½µÄºÏÍâÁ¦ÏȲ»±ä£¬ºó±äС£¬×îºóÓÖ±ä´ó | |
| D£® | ÏÈ×ö×ÔÓÉÂäÌåÔ˶¯£¬½Ó×Å×ö±ä¼ÓËÙÔ˶¯£¬È»ºó×ö¼õËÙÔ˶¯ |