题目内容
14.| A. | $\frac{1}{2}$CU2 | B. | CU2 | C. | $\frac{1}{2}$CUEd | D. | CUEd |
分析 电容器充电后在断开电源的情况下,电量不变,板间距离变化时板间场强不变.电容器的电势能为公式Ep=$\frac{1}{2}C{U}^{2}$,由此公式对初末两种状态列式,即可求解.
根据电容的决定式C=$\frac{?S}{4πkd}$,分析电容的变化,再由电容的定义式C=$\frac{Q}{U}$ 分析电压的变化,由E=$\frac{U}{d}$ 分析板间电场强度的变化.
解答 解:初态时电容器的电势能为Ep=$\frac{1}{2}C{U}^{2}$.
当右极板缓慢向右平移时,电容器的电荷量不变,根据电容的决定式C=$\frac{?S}{4πkd}$、电容的定义式C=$\frac{Q}{U}$和E=$\frac{U}{d}$得 E=$\frac{4πkQ}{?S}$,则知板间场强E不变.
末态时,电容器的带电量为CU,电容器的电势能为 Ep′=$\frac{1}{2}C′U{′}^{2}$=$\frac{1}{2}C′U′•U′$=$\frac{1}{2}CU$•(U+Ed)
故电容器电势能增加量为△Ep=Ep′-Ep=$\frac{1}{2}CU$•(U+Ed)-$\frac{1}{2}C{U}^{2}$=$\frac{1}{2}$CUEd
故选:C.
点评 本题要抓住电容器电势能的表达式Ep=$\frac{1}{2}C{U}^{2}$,明确电容与板间距离的关系.还可以进一步研究板间电压、电场强度等物理量的变化情况.要熟练推导出板间场强公式E=$\frac{4πkQ}{?S}$,知道E与d无关,这是常用的结论,要理解并牢固掌握.
练习册系列答案
相关题目
2.
如图所示,质量为m的物体用细绳拴住放在水平粗糙传送带上,物体距传送带左端的距离为L,稳定时绳与水平方向的夹角为θ,当传送带以v1的速度作逆时针转动时,剪断细绳,物体到达左端的时间分别为t1;若传送带以v2(v2>v1)的速度作逆时针转动时,剪断细绳时,物体到达左端的时间分别为t2,则下列说法正确的是( )
| A. | t2可能等于t1 | B. | t2可能大于t1 | C. | t2一定大于t1 | D. | t2一定小于t1 |
6.
如图所示,楔形物块A位于水平地面上,其光滑斜面上有一物块B,被与斜面平行的细线系住静止在斜面上.对物块A施加水平力,使A、B一起做加速运动,A、B始终保持相对静止.下列叙述正确的是( )
| A. | 若水平力方向向左,B对A的压力增大,A对地面的压力增大 | |
| B. | 若水平力方向向左,细线的拉力减小,A对地面的压力不变 | |
| C. | 若水平力方向向右,B对A的压力减小,细线的拉力增大 | |
| D. | 若水平力方向向右,细线的拉力增大,A对地的压力不变 |