ÌâÄ¿ÄÚÈÝ
2£®ÔÚ̽¾¿¡°¼ÓËÙ¶ÈÓëÁ¦µÄ¹ØÏµ¡±ÊµÑéÖУ¬Ä³Í¬Ñ§Éè¼ÆÁËÒ»ÖÖÐµķ½·¨£ºËû°´Èçͼ1Ëùʾ°²×°ºÃʵÑé×°Öã¬ÔÚ²»Ðü¹ÒСµõÅÌʱ£¬µ÷Õûľ°åÓҶ˵ĸ߶ȣ¬ÓÃÊÖÇᲦС³µ£¬Ê¹Ð¡³µÄÜÇ£ÒýÖ½´øÑس¤Ä¾°åÏò×ó×öÔÈËÙÔ˶¯£®È»ºó½«Ò»¶¨ÊýÁ¿µÄíÀÂ루Æä×ÜÖÊÁ¿Îªm£©·ÅÈëСµõÅÌÖУ¨Ð¡µõÅÌÖÊÁ¿²»¼Æ£©£¬½ÓͨµçÔ´£¬ÊÍ·ÅС³µ£¬´ò³öÒ»ÌõÀíÏëÖ½´ø£¬²¢ÔÚÖ½´øÉϱê³öСµõÅÌÖÐíÀÂëËùÊܵÄÖØÁ¦F£®ÒÔºóÿ´ÎʵÑ齫СµõÅÌÖв¿·ÖíÀÂëÒÆµ½Ð¡³µÖУ¬±£³ÖíÀÂëºÍС³µµÄ×ÜÖÊÁ¿Ò»¶¨£¬Öظ´ÊµÑé¶à´Î£¬²¢¼ÆËã³öÿÌõÖ½´ø¶ÔÓ¦µÄ¼ÓËÙ¶È£®»Ø´ðÏÂÁÐÎÊÌ⣺£¨1£©¸ÃͬѧÒÔÿ´ÎʵÑéÖÐСµõÅÌÖÐíÀÂëËùÊܵÄÖØÁ¦FΪºá×ø±ê£¬Ð¡³µ¶ÔÓ¦µÄ¼ÓËÙ¶È´óСaΪ×Ý×ø±ê£¬ÔÚ×ø±êÖ½ÉÏ×÷³öa-F¹ØÏµÍ¼Ïߣ®Í¼2ͼÏßÖУ¬ÄãÈÏΪ×îºÏÀíµÄÊÇD£®
£¨2£©°´ÉÏÊö·½°¸×öʵÑ飬ÊÇ·ñÒªÇóСµõÅÌÖÐíÀÂëµÄ×ÜÖÊÁ¿Ô¶Ð¡ÓÚС³µµÄÖÊÁ¿£¿·ñ£¨Ìî¡°ÊÇ¡±»ò¡°·ñ¡±£©
£¨3£©Èô¸ÃͬѧËù×÷³öa-F¹ØÏµÍ¼Ïߣ¬Ö±Ïß²¿·ÖбÂÊΪk£¬ÔòС³µÖÊÁ¿M=$\frac{1}{k}$-m£®
·ÖÎö £¨1£©ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öͼÏóµÄº¯Êý±í´ïʽ£¬È»ºó·ÖÎöͼÏó´ðÌ⣮
£¨2£©°ÑíÀÂëºÍС³µÕûÌå¿´³ÉÑо¿¶ÔÏó£¬Ó¦ÓÃÅ£¶ÙµÚ¶þ¶¨ÂÉ·ÖÎö´ðÌ⣮
£¨3£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö¼ÓËٶȵıí´ïʽ£¬·ÖÎöaÓëFµÄ¹ØÏµ£¬´Ó¶øÑ¡ÔñͼÏ󣬲¢¸ù¾ÝͼÏóбÂʵĺ¬ÒåÇó³öС³µÖÊÁ¿M£®
½â´ð ½â£º£¨1£©ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵãºF=£¨m+M£©a£¬¼ÓËÙ¶È£ºa=$\frac{1}{M+m}$F£¬¼ÓËÙ¶ÈÓëF³ÉÕý±È£¬Í¼ÏóÊÇͨ¹ýÔµãµÄÇãбµÄÖ±Ïߣ¬¹ÊDÕýÈ·£®
£¨2£©ÒÔíÀÂëºÍС³µ×é³ÉµÄϵͳΪÑо¿¶ÔÏó£¬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãºmg=£¨m+M£©a£¬
°ÑСµõÅÌÖв¿·ÖíÀÂëÒÆµ½Ð¡³µÖУ¬±£³ÖíÀÂëºÍС³µµÄ×ÜÖÊÁ¿Ò»¶¨£¬
²»ÐèÒªÓÃíÀÂëµÄÖØÁ¦´úÌæÉþ×ÓµÄÀÁ¦£¬ÓÃÕûÌå·¨Çó³öµÄ¼ÓËٶȾÍÊÇС³µµÄ¼ÓËÙ¶È£¬ËùÒÔ²»ÐèÒªíÀÂëºÍíÀÂëÅ̵Ä×ÜÖÊÁ¿Ô¶Ð¡ÓÚС³µµÄÖÊÁ¿£®
£¨3£©ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵãºF=£¨m+M£©a£¬¼ÓËÙ¶È£ºa=$\frac{1}{M+m}$F£¬a-FͼÏóµÄбÂÊk=$\frac{1}{M+m}$£¬½âµÃ£ºM=$\frac{1}{k}$-m£»
¹Ê´ð°¸Îª£º£¨1£©D£»£¨2£©·ñ£»£¨3£©$\frac{1}{k}$-m£®
µãÆÀ ¶ÔÓÚʵÑéÌâÒªÕÆÎÕÆäÔÀí£¬ÖªµÀ¿Î±¾ÉϵÄʵÑéΪʲôҪÇóÖØÎïµÄÖÊÁ¿Ô¶Ô¶Ð¡ÓÚС³µµÄÖÊÁ¿£¬Äܸù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö¼ÓËÙ¶ÈÓëFµÄ¹ØÏµ£¬ÖªµÀa-FͼÏóбÂʵĺ¬Ò壬ÌâÄ¿±È½ÏÐÂÓ±£¬ÄѶÈÊÊÖУ®
| A£® | ¦ÃÉäÏßÊǸßËÙÔ˶¯µÄµç×ÓÁ÷ | |
| B£® | ÇâÔ×Ó·øÉä¹â×Óºó£¬ÆäÈÆºËÔ˶¯µÄµç×Ó¶¯ÄÜÔö´ó | |
| C£® | Ì«Ñô·øÉäÄÜÁ¿µÄÖ÷ÒªÀ´Ô´ÊÇÌ«ÑôÖз¢ÉúµÄÖØºËÁѱä | |
| D£® | ${\;}_{83}^{210}$BiµÄ°ëË¥ÆÚÊÇ5Ì죬100¿Ë${\;}_{83}^{210}$Bi¾¹ý10Ììºó»¹Ê£ÏÂ50¿Ë |
| A£® | åçÐǵÄÖÊÁ¿M=$\frac{4{¦Ð}^{2}{{r}_{1}}^{3}}{G{{T}_{1}}^{2}}$ | |
| B£® | µÇ½²ÕÔڰ뾶Ϊr2¹ìµÀÉÏÔ˶¯µÄÖÜÆÚT2=T1$\sqrt{\frac{{{r}_{2}}^{3}}{{{r}_{1}}^{3}}}$ | |
| C£® | µÇ½²ÕÔڰ뾶Ϊr1Óë°ë¾¶Îªr2µÄ¹ìµÀÉÏÔ˶¯µÄÏòÐļÓËÙ¶ÈÖ®±ÈΪ$\frac{{{r}_{1}}^{2}}{{{r}_{2}}^{2}}$ | |
| D£® | åçÐDZíÃæµÄÖØÁ¦¼ÓËÙ¶Èg¡ä=$\frac{4{¦Ð}^{2}{r}_{1}}{G{{T}_{1}}^{2}}$ |
| A£® | ΢Á£´ø¸ºµç | |
| B£® | µçÈÝÆ÷µÄ´øµçÁ¿Îª$\frac{CBL{v}_{0}}{2}$ | |
| C£® | Èôab°ôÒÔËÙ¶È2v0Ïò×óÔ˶¯£¬Î¢Á£½«¾¹ýʱ¼ä$\sqrt{\frac{d}{g}}$µ½´ïÉϼ«°å | |
| D£® | Èôab°ôÔÚÍâÁ¦×÷ÓÃÏÂÓɾ²Ö¹¿ªÊ¼ÔÚµ¼¹ìÉÏ×÷¼òгÔ˶¯£¬Ô˶¯ÖеÄ×î´óËÙ¶ÈΪv0£¬ÔòÁ÷¾2RµÄ×î´óµçÁ÷Ϊ$\frac{BL{v}_{0}}{3R}$ |
| A£® | ÖʵãÔÚÔ˶¯¹ý³ÌÖÐËÙ¶È·½Ïò²»±ä | |
| B£® | ÖʵãÔÚ8sÄÚ·¢ÉúµÄÎ»ÒÆS=3m | |
| C£® | ÖʵãÔÚµÚ1sºÍµÚ4sÄ򵀮½¾ùËÙ¶È´óС²»ÏàµÈ | |
| D£® | ÖʵãÔÚµÚ1sºÍµÚ4sÄڵļÓËÙ¶ÈÏàͬ |