ÌâÄ¿ÄÚÈÝ
4£®£¨1£©Á£×ÓÉä³ö´Å³¡Ê±µÄ·½Ïò£»
£¨2£©¸ÃÁ£×ÓÉä³ö´Å³¡Ê±µÄλÖÃÓëOµãµÄ¾àÀ룻
£¨3£©Á£×ÓÔڴų¡ÖÐÔ˶¯µÄʱ¼ä£»
£¨4£©Èô¸ÃÁ£×Ó´ø¸ºµç£¬½á¹ûÈçºÎ£¿
·ÖÎö »³öÁ£×ÓÔڴų¡ÖÐÔ˶¯¹ì¼££¬´øÕýµçÁ£×Ó˳ʱÕëÐýת£¬´ø¸ºµçÁ£×ÓÄæÊ±ÕëÐýת£¬Óɼ¸ºÎ¹ØÏµÇó³öÔ²ÐĽǼ°Ô˶¯Ê±¼ä£¬¸ù¾ÝÂåÂ××ÈÁ¦³äµ±ÏòÐÄÁ¦Çó³ö°ë¾¶£¬ÔÙ½áºÏ¼¸ºÎ¹ØÏµÇó³öÉä³ö´Å³¡µÄλÖÃÓëOµãµÄ¾àÀ룮
½â´ð ![]()
½â£º£¨1£©Á£×ÓÔ˶¯µÄ¹ì¼£Èçͼ
¸ù¾Ý¼¸ºÎ¹ØÏµ£¬¡ÏOAC=¡ÏAOC=90¡ã-¦È
Á£×ÓÉä³ö´Å³¡Ê±ËÙ¶ÈÓëAC´¹Ö±£¬ËùÒÔÓë±ß½çxÖáÕý·½ÏòµÄ¼Ð½ÇΪ¦È
£¨2£©Á£×ÓÔڴų¡ÖÐÔÈËÙÔ²ÖÜÔ˶¯£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɵÃ$q{v}_{0}^{\;}B=m\frac{{v}_{0}^{2}}{R}$
$R=\frac{m{v}_{0}^{\;}}{qB}$
Á£×ÓÉä³ö´Å³¡Ê±µÄλÖÃAÓëOµãµÄ¾àÀë$OA=2Rsin¦È=2\frac{m{v}_{0}^{\;}}{qB}sin¦È$=$\frac{2m{v}_{0}^{\;}sin¦È}{qB}$
£¨3£©Á£×ÓÔڴų¡ÖÐÔ˶¯Ê±¼ä$t=\frac{2¦Ð-2¦È}{2¦Ð}T=\frac{¦Ð-¦È}{¦Ð}\frac{2¦Ðm}{qB}=\frac{2m£¨¦Ð-¦È£©}{qB}$
£¨4£©Á£×Ó´ø¸ºµç£¬¸ù¾Ý¼¸ºÎ¹ØÏµ¿ÉÖª£¬Á£×ÓÉä³ö´Å³¡Ê±ÓëxÖáÕý·½ÏòµÄ¼Ð½ÇΪ¦È£¬Éä³ö´Å³¡µÄλÖÃÓëOµã¾àÀë$x=2Rsin¦È=\frac{2m{v}_{0}^{\;}sin¦È}{qB}$
Á£×ÓÔڴų¡ÖеÄÔ˶¯Ê±¼ä$t¡ä=\frac{2¦È}{2¦Ð}T=\frac{¦È}{¦Ð}\frac{2¦Ðm}{qB}=\frac{2m¦È}{qB}$
´ð£º£¨1£©Á£×ÓÉä³ö´Å³¡Ê±µÄ·½ÏòÓëxÖáÕý·½ÏòµÄ¼Ð½ÇΪ¦È
£¨2£©Á£×ÓÉä³ö´Å³¡Ê±µÄλÖÃÓëOµãµÄ¾àÀë$\frac{2m{v}_{0}^{\;}sin¦È}{qB}$
£¨3£©Á£×ÓÔڴų¡ÖÐÔ˶¯µÄʱ¼ä$\frac{2m£¨¦Ð-¦È£©}{qB}$
£¨4£©ÈôÁ£×Ó´ø¸ºµç£¬Éä³ö´Å³¡Ê±µÄ·½Ïò²»±äµ«Î»ÖúÍÕýÀë×ÓÉä³ö´Å³¡Î»Öò»Í¬£¬¹ØÓÚÔµã¶Ô³Æ£¬Ê±¼ä²»Í¬£¬Ê±¼äΪ$\frac{2m¦È}{qB}$
µãÆÀ ±¾Ì⿼²é´øµçÁ£×ÓÔÚÔÈÇ¿´Å³¡ÖеÄÔ˶¯£¬¹Ø¼üÊǽâÌâ²½Ö裬¶¨Ô²ÐÄ£¬Çó°ë¾¶£¬»¹ì¼££¬ÕâÊÇÒ»µÀ»ù´¡Ì⣮
| A£® | ÖØÁ¦×öµÄ¹¦Îª $\frac{1}{2}$mv2 | B£® | ÔÚBµã£¬ÖØÁ¦µÄ×î´ó˲ʱ¹¦ÂÊΪmgv | ||
| C£® | ¶¯Á¿µÄ¸Ä±äÁ¿Îªmv | D£® | ÉþÀÁ¦µÄ³åÁ¿Îª0 | ||
| E£® | ºÏÁ¦µÄ³åÁ¿´óСΪmv |
| A£® | °ÂË¹ÌØ | B£® | °²Åà | C£® | Å·Ä· | D£® | ·¨ÀµÚ |