题目内容

6.如图所示,光滑轨道LMNPQMK固定在水平地面上,轨道平面在竖直面内,MNPQM是半径为R的圆形轨道,轨道LM与圆形轨道MNPQM在M点相切,轨道MK与圆形轨道MNPQM在M点相切,b点、P点在同一水平面上,K点位置比P点低,b点离地高度为2R,a点离地高度为2.5R.若将一个质量为m的小球从左侧轨道上不同位置由静止释放,关于小球的运动情况,以下说法中正确的是(  )
A.若将小球从LM轨道上a点由静止释放,小球一定不能沿轨道运动到K点
B.若将小球从LM轨道上b点由静止释放,小球一定能沿轨道运动到K点
C.若将小球从LM轨道上a、b点之间任一位置由静止释放,小球一定能沿轨道运动到K点
D.若将小球从LM轨道上a点以上任一位置由静止释放,小球沿轨道运动到K点后做斜上抛运动,小球做斜上抛运动时距离地面的最大高度一定小于由静止释放时的高度

分析 小球要能到达K点,必须通过P点,而小球恰好通过P点时,由重力提供向心力,根据牛顿第二定律可求得P点的临界速度,由机械能守恒定律求出小球从LM上释放的高度,从而判断小球否能沿轨道运动到K点.

解答 解:ABC、设小球恰好通过P点时速度为v.此时由重力提供向心力,根据牛顿第二定律得:mg=m$\frac{{v}^{2}}{R}$.
设小球释放点到地面的高度为H.从释放到P点的过程,由机械能守恒定律得:mgH=mg•2R+$\frac{1}{2}$mv2,解得H=2.5R.
所以将小球从LM轨道上a点由静止释放,小球恰好到达P点,能做完整的圆周运动,由机械能守恒守恒可知,一定能沿轨道运动到K点.
而将小球从LM轨道上b点或a、b点之间任一位置由静止释放,不能到达P点,在到达P前,小球离开圆轨道,也就不能到达K点.故A、B、C错误.
D、小球做斜上抛运动时水平方向做匀速直线运动,到最大高度时水平方向有速度,设斜抛的最大高度为H′,根据机械能守恒定律得:
   mgH=$\frac{1}{2}$mv2+mgH′,v>0,则H′<H,故小球做斜上抛运动时距离地面的最大高度一定小于由静止释放时的高度,故D正确.
故选:D

点评 本题是机械能守恒和圆周运动临界条件、斜抛知识的综合,关键掌握圆周运动最高点的临界条件,知道斜抛运动最高点速度并不为零,要运用机械能守恒列式分析.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网