ÌâÄ¿ÄÚÈÝ
6£®¢Ù´ËʱԲ»·Öеĵ繦ÂÊΪ¶àÉÙ£¿
¢Ú´ËʱԲ»·µÄ¼ÓËÙ¶ÈΪ¶àÉÙ£¿
¢Û´Ë¹ý³ÌÖÐͨ¹ýÔ²»·½ØÃæµÄµçÁ¿Îª¶àÉÙ£¿
·ÖÎö £¨1£©¸ù¾Ý·¨ÀµÚµç´Å¸ÐÓ¦¶¨ÂÉ¡¢Å·Ä·¶¨ÂÉÒÔ¼°µç¹¦Âʹ«Ê½Çó½â£»
£¨2£©·ÖÎöÏß¿òËùÊܵݲÅàÁ¦µÄºÏÁ¦£¬ÔÙÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇó½â¼ÓËÙ¶È£®
£¨3£©¸ù¾Ý·¨ÀµÚµç´Å¸ÐÓ¦¶¨ÂÉÇó½âƽ¾ù¸ÐÓ¦µç¶¯ÊÆ£¬¼ÆËã³öƽ¾ùµçÁ÷£¬ÓÉq=It¼ÆËãͨ¹ýÔ²»·½ØÃæµÄµçÁ¿£®
½â´ð ½â£º£¨1£©´ËʱµÄµç¶¯ÊÆÎª£ºE=2B¡Á2d¡Á$\frac{v}{2}$=2Bdv
ËùÒԵ繦ÂÊΪ£ºP=$\frac{{E}^{2}}{R}=\frac{{{{4B}^{2}d}^{2}v}^{2}}{R}$
£¨2£©´ËʱµÄ°²ÅàÁ¦ºÏÁ¦Îª£ºF=2BI¡Á2d
¶øI=$\frac{E}{R}$
ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãºa=$\frac{F}{m}$
ÁªÁ¢½âµÃ£¬a=$\frac{{{8B}^{2}d}^{2}v}{mR}$
£¨3£©´Ë¹ý³ÌÖеõ½Æ½¾ù¸ÐÓ¦µç¶¯ÊÆÎª£º$\overline{E}$=$\frac{¡÷∅}{¡÷t}$=$\frac{2B¡Á\frac{{¦Ðd}^{2}}{2}}{¡÷t}$
ƽ¾ù¸ÐÓ¦µçÁ÷Ϊ£º$\overline{I}=\frac{\overline{E}}{R}$
´Ë¹ý³ÌÖÐͨ¹ýÔ²»·½ØÃæµÄµçÁ¿Îª£ºq=$\overline{I}t$
ÁªÁ¢½âµÃ£ºq=$\frac{{¦ÐBd}^{2}}{R}$
´ð£º¢Ù´ËʱԲ»·Öеĵ繦ÂÊΪ$\frac{{{{4B}^{2}d}^{2}v}^{2}}{R}$
¢Ú´ËʱԲ»·µÄ¼ÓËÙ¶ÈΪ$\frac{{{8B}^{2}d}^{2}v}{mR}$
¢Û´Ë¹ý³ÌÖÐͨ¹ýÔ²»·½ØÃæµÄµçÁ¿Îª$\frac{{¦ÐBd}^{2}}{R}$£®
µãÆÀ ±¾Ì⿼²éµç´Å¸ÐÓ¦¹æÂÉ¡¢±ÕºÏµç·ŷķ¶¨ÂÉ¡¢°²ÅàÁ¦¹«Ê½¡¢µçÁ÷µÄ¶¨ÒåʽµÈµÈ£¬ÄѵãÊǸãÇå³þ´ÅͨÁ¿µÄ±ä»¯
| A£® | P=3mgvsin¦È | |
| B£® | µ±µ¼Ìå°ôËÙ¶È´ïµ½vʱ£¬¼ÓËÙ¶È´óСΪgsin¦È | |
| C£® | ÔÚËÙ¶È´ïµ½2vÒÔºóÔÈËÙÔ˶¯µÄ¹ý³ÌÖУ¬RÉϵĵ繦ÂʵÈÓÚ2P | |
| D£® | ÔÚËÙ¶È´ïµ½2vÒÔºóÔÈËÙÔ˶¯µÄ¹ý³ÌÖУ¬RÉϲúÉúµÄ½¹¶úÈȵÈÓÚÀÁ¦Ëù×öµÄ¹¦ |
| A£® | ¿ØÖƱäÁ¿·¨ | B£® | µÈЧ´úÌæ·¨ | C£® | ÀíÏëÄ£ÐÍ·¨ | D£® | Àà±È·¨ |
| A£® | IU | B£® | I 2R | C£® | IU-I 2R | D£® | IU-$\frac{U^2}{R}$ |