ÌâÄ¿ÄÚÈÝ
18£®£¨1£©ÇóµØÇò×ÔתµÄÖÜÆÚ£®
£¨2£©ÓÐÒ»¿Æ¼¼°®ºÃС×éΪÁ˲ⶨ¸ßËÙÁгµÔËÐеÄËÙ¶È£¬ÔÚÑØ³àµÀÏß×ÔÎ÷Ïò¶«ÔÈËÙÔ˶¯µÄÁгµÉÏ£¬ÈçͼËùʾ£¬ÓÃÒ»ÁéÃô¶È½Ï¸ßµÄÀÁ¦´«¸ÐÆ÷½«Ò»ÖÊÁ¿ÎªMµÄÎïÌåÊúÖ±µõÆð£¬ÀÁ¦´«¸ÐÆ÷µÄ¶ÁÊýΪF£¬Çó¸ßËÙÁгµÏà¶ÔµØÃæµÄËÙ¶È´óС£®£¨ÒÑÖªµØÇòÈÆµØÖá×ÔÎ÷Ïò¶«×ª£¬²»¼Æ¸ßËÙÁгµÔ˶¯¹ý³ÌÖÐÕ𶯶ԲâÁ¿Êý¾ÝµÄÓ°Ï죩£®
·ÖÎö £¨1£©ÔÚÁ½¼«£¬ÍòÓÐÒýÁ¦µÈÓÚÖØÁ¦£¬ÔÚ³àµÀ´¦£¬ÍòÓÐÒýÁ¦Ò»²¿·ÖÌṩÏòÐÄÁ¦£¬Ò»²¿·ÖÌá¹©ÖØÁ¦£¬¾Ý´ËÁÐʽ£¬ÁªÁ¢·½³Ì¼´¿ÉÇó½â£»
£¨2£©ÔÚ³àµÀ´¦£¬ÖØÎïÉþ×ÓµÄÀÁ¦ºÍÖØÁ¦µÄºÏÁ¦ÌṩÏòÐÄÁ¦£¬¸ù¾ÝÏòÐÄÁ¦¹«Ê½ÁÐʽ¼´¿ÉÇó½â£®
½â´ð ½â£º£¨1£©ÔÚÁ½¼«£¬ÍòÓÐÒýÁ¦µÈÓÚÖØÁ¦£¬ÔòÓУº$G\frac{Mm}{{R}^{2}}=m{g}_{0}$£¬
ÔÚ³àµÀ´¦£¬ÍòÓÐÒýÁ¦Ò»²¿·ÖÌṩÏòÐÄÁ¦£¬Ò»²¿·ÖÌá¹©ÖØÁ¦£¬ÔòÓУº$G\frac{Mm}{{R}^{2}}-m\frac{4{¦Ð}^{2}R}{{T}^{2}}=m{g}_{1}$£¬
½âµÃ£ºT=$\sqrt{\frac{4{¦Ð}^{2}R}{{g}_{0}-{g}_{1}}}$
£¨2£©ÔÚ³àµÀ´¦£¬ÖØÎïÉþ×ÓµÄÀÁ¦ºÍÖØÁ¦µÄºÏÁ¦ÌṩÏòÐÄÁ¦£¬¸ù¾ÝÏòÐÄÁ¦¹«Ê½µÃ£º
$M{g}_{1}-F=M\frac{£¨v+\frac{2¦ÐR}{T}£©^{2}}{R}$
½âµÃ£ºv=$\sqrt{\frac{£¨M{g}_{1}-F£©R}{M}}-\sqrt{£¨{g}_{0}-{g}_{1}£©R}$
´ð£º£¨1£©µØÇò×ÔתµÄÖÜÆÚΪ$\sqrt{\frac{4{¦Ð}^{2}R}{{g}_{0}-{g}_{1}}}$£®
£¨2£©¸ßËÙÁгµÏà¶ÔµØÃæµÄËÙ¶È´óСΪ$\sqrt{\frac{£¨M{g}_{1}-F£©R}{M}}-\sqrt{£¨{g}_{0}-{g}_{1}£©R}$£®
µãÆÀ ±¾ÌâµÚ¶þÎÊҪעÒâ£¬ÖØÎï×öÔ²ÖÜÔ˶¯µÄÏßËٶȲ»ÊÇÏà¶ÔµØÃæµÄËÙ¶È£¬Òª¼ÓËÙµØÇò×ÔתµÄÏßËÙ¶È£¬ÄѶÈÊÊÖУ®
| A£® | ÔÚÕâÒ»¹ý³ÌÖУ¬AÊܵ½µÄÀÁ¦´óС²»±ä | |
| B£® | ÔÚÕâÒ»¹ý³ÌÖУ¬BµÄËÙ¶È×Ü´óÓÚAµÄËÙ¶È | |
| C£® | ÔÚÕâÒ»¹ý³ÌÖУ¬Âú×ãm2gh=$\frac{1}{2}$m1v2 | |
| D£® | ÔÚÕâÒ»¹ý³ÌÖУ¬Âú×ãm2gh=$\frac{1}{2}$£¨m1+m2£©v2 |
| A£® | 8¿é£¬360ת/·Ö | B£® | 16¿é£¬180ת/·Ö | C£® | 16¿é£¬360ת/·Ö | D£® | 32¿é£¬180ת/·Ö |
| A£® | ÎïÌåÊܵ½µÄºÏÁ¦Ô½´ó£¬ËٶȵĸıäÁ¿¾ÍÔ½´ó | |
| B£® | ÎïÌåÊܵ½µÄºÏÁ¦²»±ä£¨FºÏ¡Ù0£©ÎïÌåµÄËÙ¶ÈÈÔ»á¸Ä±ä | |
| C£® | ÎïÌåÊܵ½µÄºÏÁ¦¸Ä±ä£¬Ëٶȵķ½Ïò²»Ò»¶¨¸Ä±ä | |
| D£® | ÎïÌåÊܵ½µÄºÏÁ¦²»±ä£¬ÆäÔ˶¯×´Ì¬¾Í²»»á¸Ä±ä |
| A£® | a¡¢bÁ½¿ÅÎÀÐǵÄÔ˶¯ËÙ¶ÈÏàͬ | |
| B£® | ÎÀÐÇÔÚ¹ìµÀIÉϵÄÔ˶¯ÖÜÆÚÒ»¶¨´óÓÚÎÀÐÇÔÚ¹ìµÀ¢òÉϵÄÔ˶¯ÖÜÆÚ | |
| C£® | ÎÀÐÇa¡¢b¡¢c´ËʱÔËÐеÄÏßËÙ¶È´óСÂú×ãVa=Vb£¾Vc£¾V1 | |
| D£® | µØÇò¶ÔÎÀÐÇcµÄÍòÓÐÒýÁ¦¿ÉÄÜ´óÓÚ¶ÔÎÀÐÇbµÄÍòÓÐÒýÁ¦ |