ÌâÄ¿ÄÚÈÝ
14£®Ä³Í¬Ñ§ÓÃͼ¼××°ÖÃÀ´ÑéÖ¤¶¯Á¿Êغ㶨ÂÉ£¬ÊµÑé²½ÖèÈçÏ£º¢Ù½«°×Ö½¡¢¸´Ð´Ö½¹Ì¶¨ÔÚÊúÖ±·ÅÖõÄľ°åÉÏ£¬ÓÃÀ´¼Ç¼ÇòÓëľ°åµÄײ»÷µã£®
¢Ú½«Ä¾°åÊúÖ±Á¢ÔÚÓڹ̶¨Ä©¶ËÓҲಢÓë¹ìµÀ½Ó´¥£¬Ö»ÈÃAÇò´Óб¹ìÉϹöÏ£¬¼ÇÏÂAÇòÔÚľ°åÉϵÄײ»÷µãO¡ä£®
¢Û½«Ä¾°åÆ½ÒÆµ½Í¼ÖÐËùʾλÖ㬹ìµÀÄ©¶Ë²»·ÅBÇò£¬ÈÃAÇò´Óб¹ìÉÏijλÖÃÓɾ²Ö¹ÊÍ·Å£¬Öظ´10´Î£¬µÃµ½AÇòÔÚľ°åÉϵÄײ»÷µãµÄƽ¾ùλÖÃP¡ä£®
¢ÜZÔÚ¹ìµÀÄ©¶Ë·ÅÉÏBÇò£¬ÈÔ½«AÇò´Óб¹ìÉÏÓɾ²Ö¹ÊÍ·ÅÓëBÇòÏàײ£¬Öظ´10´Î£¬µÃµ½AÇòºÍBÇòÔÚľ°åÉϵÄײ»÷µãµÄƽ¾ùλÖÃM¡äºÍN¡ä£®
ͼÖÐh1¡¢h2¡¢h3·Ö±ð±íʾO¡äÓëN¡ä¡¢P¡ä¡¢M¡äµÄ¸ß¶È²î£®
£¨1£©Îª±£Ö¤Á½ÇòÕýÄÜÁ¿£¬¸Ãͬѧͨ¹ý20·Ö¶ÈµÄÓα꿨³ßÑ¡Ôñ´óСÏàͬµÄÁ½¸öСÇò£®²âÁ¿Ð¡ÇòÖ±¾¶Ê±µÄ½á¹ûÈçͼÒÒ£¬¶ÁÊýΪ15.20mm£®
£¨2£©¶ÔʵÑé¹ý³ÌÖеÄÒªÇó£¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇBCD
A£®¹ìµÀ±ØÐë¹â»¬
B£®AÇòÖÊÁ¿±ØÐë±ØBÇò´ó
C£®¹ìµÀÄ©¶ËµÄÇÐÏß±ØÐëˮƽ
D£®²½Öè¢Û¢ÜÖУ¬AÇòÿ´Î±ØÐë´Óб¹ìµÄͬһλÖÃÓɾ²Ö¹ÊÍ·Å
£¨3£©ÊµÑéÖгýÐè²âÁ¿h1¡¢h2¡¢h3Í⣬»¹ÐèÒª²âÁ¿µÄÎïÀíÁ¿ÓÐB
A£®AÇòÊͷŵ㵽¹ìµÀÄ©¶ËµÄÊúÖ±¸ß¶Èh
B£®AÇòºÍBÇòµÄÖÊÁ¿mA¡¢mB
C£®¹ìµÀÄ©¶Ëµ½Ä¾°åµÄˮƽ¾àÀëx
£¨4£©ÈôËù²âÁ¿ÎïÀíÁ¿Âú×ã±í´ïʽ$\frac{{m}_{A}}{\sqrt{{h}_{2}}}=\frac{{m}_{A}}{\sqrt{{h}_{3}}}+\frac{{m}_{B}}{\sqrt{{h}_{1}}}$£¨ÓÃʵÑéÖÐËùÐè²âÁ¿µÄÎïÀíÁ¿·ûºÅ±íʾ£©£¬Ôò˵Ã÷Á½ÇòÅöײ¹ý³ÌÖж¯Á¿Êغ㣮
·ÖÎö £¨1£©Óα꿨³ßµÄ¶ÁÊýµÈÓÚÖ÷³ß¶ÁÊý¼ÓÉÏÓαê¶ÁÊý£¬²»Ðè¹À¶Á£®
£¨2£©¸ù¾ÝʵÑéµÄÔÀíºÍ×¢ÒâÊÂÏîÈ·¶¨ÕýÈ·µÄ²Ù×÷²½Ö裮
£¨3¡¢4£©½áºÏƽÅ×Ô˶¯µÄ¹æÂÉ£¬µÃ³ö¶¯Á¿ÊغãµÄ±í´ïʽ£¬´Ó¶øÈ·¶¨»¹ÐèÒª²âÁ¿µÄÎïÀíÁ¿£®
½â´ð ½â£º£¨1£©Óα꿨³ßµÄÖ÷³ß¶ÁÊýΪ15mm£¬Óαê¶ÁÊýΪ0.05¡Á4mm=0.20mm£¬Ôò¶ÁÊýΪ15.20mm£®
£¨2£©A¡¢ÎªÁ˱£Ö¤Ð¡ÇòA»¬µ½µ×¶ËµÄËÙ¶ÈÏàµÈ£¬Ö»Ð轫СÇòÿ´Î´Óб²ÛµÄͬһλÖÃÓɾ²Ö¹Êͷż´¿É£¬²»ÐèÒª¹â»¬£¬¹ÊA´íÎó£¬DÕýÈ·£®
B¡¢Á½Çò·¢ÉúÅöײºóËÙ¶È·½Ïò¾ùÏòǰ£¬ÔòAµÄÖÊÁ¿±ØÐë´óÓÚBµÄÖÊÁ¿£¬¹ÊBÕýÈ·£®
C¡¢ÎªÁ˱£Ö¤Ð¡ÇòÉä³öµÄ³õËÙ¶Èˮƽ£¬Ð±²ÛÄ©¶Ë±ØÐëˮƽ£¬¹ÊCÕýÈ·£®
¹ÊÑ¡£ºBCD£®
£¨3¡¢4£©Ð¡ÇòA²»ÓëBÅöײ£¬×²ÔÚP¡äµã£¬ÓëBÇòÅöײºó£¬AײÔÚM¡äµã£¬BײÔÚN¡äµã£¬
ƽÅ×Ô˶¯µÄʱ¼ä·Ö±ðΪ${t}_{1}=\sqrt{\frac{2{h}_{1}}{g}}$£¬${t}_{2}=\sqrt{\frac{2{h}_{2}}{g}}$£¬${t}_{3}=\sqrt{\frac{2{h}_{3}}{g}}$£¬
Ôò${v}_{A}=\frac{x}{{t}_{2}}=\frac{x}{\sqrt{\frac{2{h}_{2}}{g}}}$£¬${v}_{A}¡ä=\frac{x}{{t}_{3}}=\frac{x}{\sqrt{\frac{2{h}_{3}}{g}}}$£¬${v}_{B}=\frac{x}{{t}_{1}}=\frac{x}{\sqrt{\frac{2{h}_{1}}{g}}}$£¬
µ±mAvA=mAvA¡ä+mBvB£¬¼´$\frac{{m}_{A}}{\sqrt{{h}_{2}}}=\frac{{m}_{A}}{\sqrt{{h}_{3}}}+\frac{{m}_{B}}{\sqrt{{h}_{1}}}$£¬Á½ÇòÅöײ¹ý³ÌÖж¯Á¿Êغ㣮
¿É֪ʵÑéÖгýÐè²âÁ¿h1¡¢h2¡¢h3Í⣬»¹ÐèÒª²âÁ¿µÄÎïÀíÁ¿ÓÐAÇòºÍBÇòµÄÖÊÁ¿mA¡¢mB£¬¹ÊÑ¡£ºB£®
¹Ê´ð°¸Îª£º£¨1£©15.20£¬£¨2£©BCD£¬£¨3£©B£¬£¨4£©$\frac{{m}_{A}}{\sqrt{{h}_{2}}}=\frac{{m}_{A}}{\sqrt{{h}_{3}}}+\frac{{m}_{B}}{\sqrt{{h}_{1}}}$£®
µãÆÀ ±¾Ì⿼²éÁËÑéÖ¤¶¯Á¿Êغ㶨ÂÉ£¬ÊµÑéÉè¼ÆÐÂÓ±£¬Óë¿Î±¾ÉϵÄʵÑ鲻ͬ£¬ÈÏÕæÉóÌâ¡¢¸ù¾ÝÌâÒâÖªµÀʵÑéÔÀíÊÇÕýÈ·½âÌâµÄǰÌáÓë¹Ø¼ü£»Ó¦ÓÃÆ½Å×Ô˶¯¹æÂÉ¡¢¶¯Á¿Êغ㶨ÂÉÓë»úеÄÜÊØºã¶¨Âɼ´¿ÉÕýÈ·½âÌ⣮
| A£® | Ħ²ÁÁ¦¶Ô¹¤¼þ×öµÄ¹¦Îª$\frac{1}{2}$mv2 | |
| B£® | ϵͳÔö¼ÓµÄÄÚÄÜΪ$\frac{1}{2}$mv2 | |
| C£® | ´«ËÍ´øÐè¶îÍâ×öµÄ¹¦Îª$\frac{1}{2}$mv2 | |
| D£® | ¹¤¼þÏà¶ÔÓÚ´«ËÍ´ø»¬¶¯µÄ·³Ì´óСΪ$\frac{{v}^{2}}{2¦Ìg}$ |
| A£® | ËÙ¶ÈСÓÚvµÄÁ£×ÓÔڴų¡ÖÐÔ˶¯Ê±¼äΪ$\frac{¦Ðm}{2qB}$ | |
| B£® | ¾¹ýcµãµÄÁ£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄ°ë¾¶ÎªL | |
| C£® | ¾¹ýdµãµÄÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄʱ¼äΪ$\frac{¦Ðm}{4qB}$ | |
| D£® | ËÙ¶È´óÓÚ2v СÓÚ4vµÄÁ£×ÓÒ»¶¨´òÔÚcd±ßÉÏ |