ÌâÄ¿ÄÚÈÝ
16£®Èçͼ£¬ÔÚ¾àµØÃæ¸ßΪH=0.5mµÄ¹â»¬×ÀÃæ×ó¶ËÓÐÒ»¹Ì¶¨ÊúÖ±°å£¬°åÉϹ̶¨Ò»µ¯»É£¬ÔÚ×ÀÃæÉÏÓÐÒ»¿éºÜ±¡µÄ³¤ÎªL=0.5mµÄľ°å£¬Ä¾°åµÄ×ó¶Ë¹Ì¶¨ÓÐÊúÖ±µ²°å£¨ºÍľ¿éÒ»ÆðÔ˶¯£©£¬Ä¾°åºÍ¸Ãµ²°åµÄ×ÜÖÊÁ¿ÎªM=2kg£¬ÔÚľ°åÉϽô¿¿µ²°å·ÅÖÃÒ»ÖÊÁ¿Îªm=1kgµÄСľ¿é£¬Ð¡Ä¾¿éÓëľ°åÖ®¼äµÄĦ²ÁÒòÊýΪ¦Ì=0.1£®ÔÚ×ÀÃæÓҶ˹̶¨ÓÐÒ»ºÜ°«µÄÕ³°å£¬Æä¸ß¶ÈÂÔµÍÓÚ³¤Ä¾°åµÄºñ¶È£¬µ±³¤Ä¾°åײµ½Õ³°åÉÏʱ£¬ËÙ¶ÈÁ¢¼´±äΪ0£®ÔÚ¾à×ÀÃæÓÒ¶ËS=1m´¦ÓÐÒ»¸ßΪh=0.3m¡¢Ë®Æ½³¤¶ÈΪL0=0.2mµÄµ²Íø£®Óó¤Ä¾°å½«µ¯»ÉѹËõ£¬²¢ÓÃϸÉþ¹Ì¶¨£®£¨µ¯»ÉÓÒ¶ËÓ볤ľ°å²»Õ³Á¬£¬³¤Ä¾°åÓҶ˾à×ÀÃæÓÒ¶Ë×ã¹»Ô¶£¬g=10m/s2£© ÏÖÉÕ¶ÏÉþ×Ó£¬³¤Ä¾°åºÍСľ¿éÒ»Æð±»µ¯³ö£¬Ôò£º£¨1£©Èô×îÖÕСľ¿éÍ£ÔÚ³¤Ä¾°å×îÓÒ¶Ë£¬ÔòÉÕ¶ÏÉþʱµ¯»É´¢´æµÄµ¯ÐÔÊÆÄÜÊǶà´ó£¿
£¨2£©ÈôҪʹСľ¿é×îÖÕÂäÔÚµ²ÍøÉÏ£¬Ôòµ¯»ÉµÄµ¯ÐÔÊÆÄÜÐèÔÚʲô·¶Î§ÄÚ£¿
·ÖÎö £¨1£©³¤Ä¾°åMײµ½Õ³°åºó£¬mÔÚMÉÏÏòÓÒ×öÔȼõËÙÔ˶¯£¬½áºÏµ¯»É´¢´æµÄµ¯ÐÔÊÆÄܵÈÓÚmºÍMµÄ³õʼ¶¯Äܼ´¿ÉÕýÈ·Çó½â£®
£¨2£©ÏÈÇó³öÀ뿪×ÀÃæµÄËÙ¶È£¬ÔÙ¾ÝÆ½Å×Ô˶¯ÖªÊ¶ºÍ¶¯Äܶ¨ÀíÇó½â¼´¿É£®
½â´ð ½â£º
£¨1£©µ¯»Éµ¯¿ªºó£¬mÓëMÒ»ÆðÏòÓÒ×öÔÈËÙÖ±ÏßÔ˶¯£¬ÉèËÙ¶È´óСΪ v0£¬Mײµ½Õ³°åºó£¬mÔÚMÉÏÏòÓÒ×öÔȼõËÙÔ˶¯£¬²¢À뿪M£®Óɶ¯Äܶ¨ÀíÓУº
$0-\frac{1}{2}m{v}_{0}^{2}=-¦ÌmgL$
ËùÒÔ£º${v}_{0}^{2}=2¦ÌgL$
µ¯»É´¢´æµÄµ¯ÐÔÊÆÄܵÈÓÚmºÍMµÄ³õʼ¶¯ÄÜ£¬¼´£º
${E}_{P}=\frac{1}{2}£¨M+m£©{v}_{0}^{2}=¦Ì£¨M+m£©gL$
´úÈëÊý¾ÝµÃ£ºEP=1.5J
£¨2£©Èôm¸ÕºÃÂäÔÚÍøµÄµ×¶Ë£¬mÀ뿪ľ°åºó×öƽÅ×Ô˶¯µÄ³õËÙ¶ÈΪv1£¬ÔòÓУº
$H=\frac{1}{2}g{t}_{1}^{2}$
S=v1t1
ËùÒÔ£º${v}_{1}=S\sqrt{\frac{g}{2H}}$
´úÈëÊý¾ÝµÃ£º${v}_{1}=\sqrt{10}$m/s
µ¯»Éµ¯¿ªÊ±£¬mºÍMµÄËÙ¶ÈΪvmin£¬¶ÔmÔÚMÉÏÔ˶¯µÄ¹ý³ÌÓУº
$\frac{1}{2}m{v}_{1}^{2}-\frac{1}{2}m{v}_{min}^{2}=-¦ÌmgL$
ËùÒÔ£º${v}_{min}^{2}={v}_{1}^{2}+2¦ÌgL$
µ¯»ÉµÄµ¯ÐÔÊÆÄÜ×îСֵΪ£ºEPmin=16.5J
Èôm¸ÕºÃÂäÔÚÍøµÄ¶¥¶Ë£¬Ôò£º$H-h=\frac{1}{2}g{t}_{2}^{2}$
S+L=${v}_{2}{t}_{2}^{2}$
ËùÒÔ£º${v}_{2}=£¨S+{L}_{0}£©•\sqrt{\frac{g}{2£¨H-h£©}}=6$m/s
Õâʱµ¯»Éµ¯¿ªÊ±£¬mºÍMµÄËÙ¶ÈΪvmax£¬¶ÔmÔÚMÉÏÔ˶¯µÄ¹ý³ÌÓУº
$\frac{1}{2}m{v}_{2}^{2}-\frac{1}{2}m{v}_{max}^{2}=-¦ÌmgL$
µ¯»ÉµÄµ¯ÐÔÊÆÄÜ×î´óֵΪ£ºEPmax=55.5J
ËùÒÔ£¬µ¯»Éµ¯ÐÔÊÆÄÜÓ¦ÔÚÏÂÁз¶Î§ÄÚ£º16.5J£¼EP£¼55.5J
´ð£º£¨1£©Èô×îÖÕСľ¿éÍ£ÔÚ³¤Ä¾°å×îÓÒ¶Ë£¬ÔòÉÕ¶ÏÉþʱµ¯»É´¢´æµÄµ¯ÐÔÊÆÄÜÊÇ1.5J
£¨2£©ÈôҪʹСľ¿é×îÖÕÂäÔÚµ²ÍøÉÏ£¬Ôòµ¯»ÉµÄµ¯ÐÔÊÆÄÜÐèÂú×ã16.5J£¼EP£¼55.5J£®
µãÆÀ ¸ÃÌâÊôÓÚµ¥ÎïÌå¶à¹ý³ÌµÄÇé¿ö£¬Ã÷È·½ðÊô¿éµÄÔ˶¯Çé¿öÊǽâÌâµÄ¹Ø¼ü£¬Áé»îÓ¦Óö¯Äܶ¨Àí¡¢Ô˶¯Ñ§¹«Ê½ºÍƽÅ×Ô˶¯µÄ֪ʶÊǽâÌâµÄ¹Ø¼ü£¬´ËÌâÔ˶¯¹ý³Ì½Ï¸´ÔÓ£¬ÄѶȽϴó£®
| A£® | x2-xl£¾x3-x2 | B£® | x2-xl=x3-x2 | C£® | x2-xl£¼x3-x2 | D£® | ÎÞ·¨ÅÐ¶Ï |
| A£® | ΢СÐαäµÄÑÝʾ¡¢¿¨ÎĵÏÐíÓÃŤ³Ó²â³öÒýÁ¦³£Á¿ºÍ¿âÂØÓÃŤ³ÓÑо¿µçºÉÖ®¼äµÄ×÷ÓÃÁ¦¶¼²ÉÓÃÁË·Å´ó·¨ | |
| B£® | Ù¤ÀûÂÔÓ¦ÓÃÀíÏëʵÑé˵Ã÷Á¦ÊÇά³ÖÎïÌåÔ˶¯µÄÔÒò | |
| C£® | ˲ʱËٶȶ¨Ò塢˲ʱ¼ÓËٶȶ¨ÒåÓ¦ÓÃÁ˼«ÏÞ·¨ | |
| D£® | ÔÚÍÆµ¼ÔȱäËÙÖ±ÏßÔ˶¯Î»Òƹ«Ê½Ê±£¬°ÑÕû¸öÔ˶¯¹ý³Ì»®·Ö³ÉºÜ¶àС¶Î£¬Ã¿Ò»Ð¡¶Î½üËÆ¿´×÷ÔÈËÙÖ±ÏßÔ˶¯£¬È»ºóÓø÷С¶ÎµÄÎ»ÒÆÖ®ºÍ´ú±íÎïÌåµÄÎ»ÒÆÓ¦ÓÃÁË΢Ԫ·¨ |
| A£® | ÎÀÐÇAµÄ½ÇËٶȱÈB´ó | B£® | ÎÀÐÇAµÄÏßËٶȱÈBС | ||
| C£® | ÎÀÐÇAµÄÏòÐļÓËٶȱÈBµÄ´ó | D£® | ÎÀÐÇAµÄÔËÐÐÖÜÆÚ±ÈBµÄС |
| A£® | ¡°Ì칬һºÅ¡±µÄÔËÐÐËٶȱÈͬ²½ÎÀÐǵĿì | |
| B£® | ¡°Ì칬һºÅ¡±ËùÊܵÄÏòÐÄÁ¦±Èͬ²½ÎÀÐǵÄС | |
| C£® | ¡°Ì칬һºÅ¡±µÄÏòÐļÓËٶȱÈͬ²½ÎÀÐǵĴó | |
| D£® | ¡°Ì칬һºÅ¡±µÄÔËÐÐÖÜÆÚ±Èͬ²½ÎÀÐǵÄС |
| A£® | ¸ÃÖ±½ÇÈýÀâ¾µ¶ÔÀ¶¹âµÄÕÛÉäÂÊΪ$\sqrt{2}$ | |
| B£® | ¸ÃÖ±½ÇÈýÀâ¾µ¶ÔÀ¶¹âµÄÕÛÉäÂÊΪ$\frac{\sqrt{2}}{2}$ | |
| C£® | À¶¹âµÚÒ»´Î´ÓÀâ¾µÉäÈë¿ÕÆøÊ±µÄÕÛÉä½ÇΪ45¡ã | |
| D£® | À¶¹âµÚÒ»´Î´ÓÀâ¾µÉäÈë¿ÕÆøÊ±µÄÕÛÉä½ÇΪ60¡ã |
| A£® | ÖØÁ¦¶ÔÈËÒ»Ö±×öÕý¹¦ | |
| B£® | Íæ¼ÒÔÚDµã¼ÓËÙ¶ÈΪ0 | |
| C£® | Íæ¼Òͨ¹ýBµãÖ®ºó£¬Éþ×Ó¾ßÓе¯ÐÔÊÆÄÜ | |
| D£® | Íæ¼ÒÔÚBµãËÙ¶È×î´ó |