ÌâÄ¿ÄÚÈÝ
5£®·ÖÎö Á£×ÓÿתһÖÜ£¬ËÙ¶ÈÔö¼ÓÒ»µã£¬Óɰ뾶¹«Ê½$r=\frac{mv}{qB}$ÖªµÀ£ºÒªÊ¹°ë¾¶²»±ä£¬Ôò´Å¸ÐӦǿ¶ÈÒ²ÒªÔö¼Ó£¬ÔÙÓÉÖÜÆÚ¹«Ê½$T=\frac{2¦Ðm}{qB}$ÖªµÀ£º´Å¸ÐӦǿ¶ÈÔö¼Ó£¬ÔòÖÜÆÚ½«¼õС£®ÕâÊÇÔÚ¶¨ÐÔ·ÖÎö£®Òª»³öËĸöÖÜÆÚÄÚµÄB-tͼÏó£¬ÔòÒªÏÈÓɰ뾶¹«Ê½Ëã³öµÚÒ»ÖÜÆÚÄڵĴŸÐӦǿ¶ÈB1£¬ÔÙÓɶ¯Äܶ¨ÀíËã³öµÚ¶þ´Î¼ÓËÙʱµÄËÙ¶È£¬ÔÙÓɰ뾶¹«Ê½Ëã³öB2£¬ÓÉÖÜÆÚ¹«Ê½Ëã³öµÚ¶þȦµÄʱ¼ä£¬Óà´ÎÀàÍÆ´Ó¶øËã³öB3¡¢B4 ºÍµÚÈýȦºÍµÚËÄȦµÄʱ¼ä£®
½â´ð
½â£ºÎ¢Á£µÚÒ»´ÎÔÚPQ¼ä¼ÓËÙʱ£¬¾Ý¶¯Äܶ¨Àí£º
$Uq=\frac{1}{2}m{{v}_{1}}^{2}$¡¢Ù
µÚÒ»´Î×öÔÈËÙÔ²ÖÜÔ˶¯Ê±£¬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãº
$q{v}_{1}{B}_{1}=\frac{m{v}^{2}}{R}$¡¢Ú
תµÚһȦµÄʱ¼ä£º
${t}_{1}=\frac{2¦ÐR}{{v}_{1}}$¡¢Û
ÁªÁ¢½âµÃ£º${B}_{1}=\frac{1}{R}\sqrt{\frac{2Um}{q}}$ ${t}_{1}=2¦ÐR\sqrt{\frac{m}{Uq}}$
ͬÀí£ºÎ¢Á£µÚ¶þ´ÎÔÚPQ¼ä¼ÓËÙʱ£º
$Uq=\frac{1}{2}m{{v}_{2}}^{2}-\frac{1}{2}m{{v}_{1}}^{2}$¡¢Ü
µÚ¶þ´Î×öÔÈËÙÔ²ÖÜÔ˶¯Ê±£º
$q{v}_{2}{B}_{2}=\frac{m{{v}_{2}}^{2}}{R}$¡¢Ý
ËùÓÐʱ¼äΪ£º${t}_{2}=\frac{2¦Ð{R}_{2}}{{v}_{2}}$¡¢Þ
ÁªÁ¢½âµÃ£º${B}_{2}=\frac{1}{R}\sqrt{\frac{4Um}{q}}$ ${t}_{2}=2¦ÐR\sqrt{\frac{m}{4Uq}}$
Óà´ÎÀàÍÆµÃµ½£º${B}_{3}=\frac{1}{R}\sqrt{\frac{6Um}{q}}$ ${t}_{3}=2¦ÐR\sqrt{\frac{m}{6Uq}}$
${B}_{4}=\frac{1}{R}\sqrt{\frac{8Um}{q}}$ ${t}_{4}=2¦ÐR\sqrt{\frac{m}{8Uq}}$
ÓÉÉÏÊö¼ÆËã½á¹û¿ÉÒÔ¿´³ö£º${B}_{1}£º{B}_{2}£º{B}_{3}£º{B}_{4}=1£º\sqrt{2}£º\sqrt{3}£º2$
${t}_{1}£º{t}_{2}£º{t}_{3}£º{t}_{4}=4\sqrt{3}£º2\sqrt{3}£º2\sqrt{2}£º\sqrt{6}$
ÏÔÈ»ÓУºB4=2B1 ${t}_{2}=\frac{1}{2}{t}_{1}$
ËùÒÔ»³öµÄB-tͼÏóÈçÓÒͼËùʾ£®
µãÆÀ ±¾ÌâµÄ¹Ø¼üµãÔÚÓÚ´ÓµÚÒ»´Î¼ÓËÙ¡¢×ª¶¯µ½µÚ¶þ´Î¼ÓËÙ¡¢×ª¶¯Ê±£¬Ó¦Óö¯Äܶ¨ÀíºÍÅ£¶ÙµÚ¶þ¶¨Âɼ°Ô˶¯Ñ§¹æÂÉ£¬½â³öB¡¢t±í´ïʽµÄ¹æÂÉ£¬´Ó¶øÍÆËã³öµÚÈý´ÎºÍµÚËĴμÓËÙ¡¢×ª¶¯Ê±B¡¢t ±í´ïʽ£®
¢ÙÑо¿¡°Éñʮһ¡±ºÍ¡°Ì칬¡±¶Ô½Ó¹ý³Ìʱ£¬¡°Éñʮһ¡±ºÍ¡°Ì칬¡±¿ÉÊÓΪÖʵã
¢ÚÈç¹ûÎïÌåµÄÐÎ×´ºÍ´óС¶ÔËùÑо¿µÄÎÊÌâÊôÓÚÎ޹ػò´ÎÒªÒòËØÊ±£¬¾Í¿É°ÑÎïÌå¿´×÷Öʵã
¢Û¡°ÔÂÁÁÔÚ°×ÔÆÖд©ÐС±ÊÇÒÔ°×ÔÆÎª²Î¿¼Ïµ
¢ÜÖ»Óо²Ö¹µÄÎïÌå²ÅÄÜ×öΪ²Î¿¼Ïµ£®
| A£® | ¢Ù¢Ú | B£® | ¢Ù¢Û | C£® | ¢Ú¢Û | D£® | ¢Ú¢Ü |
| A£® | ΢Á£´øÕýµç | |
| B£® | µçÔ´µç¶¯ÊƵĴóСµÈÓÚ$\frac{mgd}{q}$ | |
| C£® | ¶Ï¿ª¿ª¹ØS£¬Î¢Á£½«ÏòÏÂ×ö¼ÓËÙÔ˶¯ | |
| D£® | ±£³Ö¿ª¹ØS±ÕºÏ£¬°ÑµçÈÝÆ÷Á½¼«°å¼äµÄ¾àÀëÔö´ó£¬Î¢Á£½«ÏòÏÂ×ö¼ÓËÙÔ˶¯ |
| A£® | СÇò´øÕýµç£¬½ðÊôÎï¿é´ø¸ºµç | B£® | ÔÈÇ¿µç³¡µÄ³¡Ç¿´óСΪ$\frac{mg}{q}$ | ||
| C£® | СÇòÔڵ糡ÖÐÀ´»ØµÄʱ¼äÏàµÈ | D£® | µ¯»ØºóÐéÏ߹켣²»Ò»¶¨ÊÇÅ×ÎïÏß |
| A£® | Èô½«Éϼ¶°åÉÔÏòÉÏÒÆ¶¯£¬ÔòСÇòµ½´ïϼ«°åС¿×´¦ËÙ¶ÈǡΪÁã | |
| B£® | Èô½«Éϼ¶°åÉÔÏòÏÂÒÆ¶¯£¬ÔòСÇòµ½´ïϼ«°åС¿×´¦ËÙ¶ÈǡΪÁã | |
| C£® | Èô½«Ï¼¶°åÉÔÏòÉÏÒÆ¶¯£¬ÔòСÇòµ½´ïϼ«°åС¿×´¦ËٶȾÍÒÑΪÁã | |
| D£® | Èô½«Ï¼¶°åÉÔÏòÏÂÒÆ¶¯£¬ÔòСÇòµ½´ïϼ«°åС¿×´¦ËÙ¶ÈǡΪÁã |
| A£® | ÔÚ²»ÐèÒª¿¼ÂÇÎïÌå±¾ÉíµÄ´óСºÍÐÎ״ʱ£¬ÓÃÖʵãÀ´´úÌæÎïÌåµÄ·½·¨ÔËÓÃÁ˼ÙÉè·¨ | |
| B£® | ¸ù¾ÝËٶȵ͍Òåʽv=$\frac{¡÷x}{¡÷t}$£¬µ±¡÷tÇ÷½üÓÚÁãʱ£¬¾Í¿ÉÒÔ±íʾÎïÌåÔÚtʱ¿ÌµÄ˲ʱËÙ¶È£¬¸Ã¶¨ÒåÔËÓÃÁË΢Ԫ·¨ | |
| C£® | ÔÚʵÑé̽¾¿¼ÓËÙ¶ÈÓëÁ¦¡¢ÖÊÁ¿µÄ¹ØÏµÊ±£¬ÔËÓÃÁË¿ØÖƱäÁ¿·¨ | |
| D£® | ÔÚÍÆµ¼ÔȱäËÙÖ±ÏßÔ˶¯Î»Òƹ«Ê½Ê±£¬°ÑÕû¸öÔ˶¯¹ý³ÌµÈ·Ö³ÉºÜ¶àС¶Î£¬È»ºó½«¸÷С¶ÎÎ»ÒÆÏà¼Ó£¬ÔËÓÃÁË΢Ԫ·¨ |