ÌâÄ¿ÄÚÈÝ
14£®£¨i£©×Óµ¯´©¹ýAʱµÄËÙ¶È£»
£¨ii£©A¡¢BÁ½Îï¿éÍ£Ö¹Ô˶¯Ê±Ö®¼äµÄ¾àÀ룮
·ÖÎö £¨i£©×Óµ¯ÓëÎï¿é×é³ÉµÄϵͳ¶¯Á¿Êغ㣬Óɶ¯Á¿Êغ㶨ÂÉ¿ÉÒÔÇó³ö×Óµ¯µÄËÙ¶È£®
£¨ii£©¶ÔA¡¢BÓ¦Óö¯Äܶ¨ÀíÇó³öÆäÎ»ÒÆ£¬È»ºóÇó³öA¡¢BÍ£Ö¹Ô˶¯Ê±Á½Õß¼äµÄ¾àÀ룮
½â´ð ½â£º£¨i£©×Óµ¯ÓëA×é³ÉµÄϵͳ¶¯Á¿Êغ㣬×Óµ¯ÓëB×é³ÉµÄϵͳ¶¯Á¿Êغ㣬
ÒÔÏòÓÒΪÕý·½Ïò£¬Óɶ¯Á¿Êغ㶨Âɵãº
¶Ô×Óµ¯ÓëA£ºmv0=mv×Óµ¯+2MvA£¬
¶Ô×Óµ¯ÓëB£ºmv×Óµ¯+MvA=£¨m+M£©v£¬
½âµÃ£ºv×Óµ¯=$\frac{2£¨M+m£©v}{m}$-v0£¬vA=$\frac{m{v}_{0}-£¨M+m£©v}{M}$£»
£¨2£©Óɶ¯Äܶ¨ÀíµÃ£º
¶ÔA£º-¦ÌMgsA=0-$\frac{1}{2}$MvA2£¬
¶Ô×Óµ¯ÓëB£º-¦Ì£¨M+m£©gsB=0-$\frac{1}{2}$£¨M+m£©v2£¬
Á½Õß¼äµÄ¾àÀ룺d=sB-sA£¬
½âµÃ£ºd=$\frac{{v}^{2}}{2¦Ìg}$-$\frac{[m{v}_{0}-£¨M+m£©v]^{2}}{2¦Ìg{M}^{2}}$£»
´ð£º£¨i£©×Óµ¯´©¹ýAʱµÄËÙ¶ÈΪ$\frac{2£¨M+m£©v}{m}$-v0£»
£¨ii£©A¡¢BÁ½Îï¿éÍ£Ö¹Ô˶¯Ê±Ö®¼äµÄ¾àÀëΪ$\frac{{v}^{2}}{2¦Ìg}$-$\frac{[m{v}_{0}-£¨M+m£©v]^{2}}{2¦Ìg{M}^{2}}$£®
µãÆÀ ±¾Ì⿼²éÁËÇóËÙ¶È¡¢¾àÀëÎÊÌ⣬·ÖÎöÇå³þÎïÌåµÄÔ˶¯¹ý³Ì£¬Ó¦Óö¯Á¿Êغ㶨ÂÉ¡¢¶¯Äܶ¨Àí¼´¿ÉÕýÈ·½âÌ⣮
| A£® | Ô²ÖÜÔ˶¯µÄËÙ¶È´óС | B£® | µç³¡Ç¿¶ÈµÄ´óСºÍ·½Ïò | ||
| C£® | СÇòÔÚµÚ¢ôÏóÏÞÔ˶¯µÄʱ¼ä | D£® | ´Å¸ÐӦǿ¶È´óС |
| A£® | $\frac{{v}_{1}^{2}+{v}_{2}^{2}}{k£¨{v}_{1}^{2}-{v}_{2}^{2}£©}$ | B£® | $\frac{k£¨{v}_{1}^{2}+{v}_{2}^{2}£©}{{v}_{1}^{2}-{v}_{2}^{2}}$ | ||
| C£® | $\frac{{v}_{1}^{2}-{v}_{2}^{2}}{k£¨{v}_{1}^{2}+{v}_{2}^{2}£©}$ | D£® | $\frac{k£¨{v}_{1}^{2}-{v}_{2}^{2}£©}{{v}_{1}^{2}+{v}_{2}^{2}}$ |