ÌâÄ¿ÄÚÈÝ
17£®£¨1£©ÈôMµãµÄ³¡Ç¿Îª200N/C£¬O¡¢M¾àÀëΪ¶àÉÙ£¿
£¨2£©Èô°ÑµãµçºÉq·ÅÖÃÔÚNµã£¬qÊÜQµÄ¿âÂØÁ¦Îª1.8¡Á10-8N£¬ÇóqµçÁ¿´óС
£¨3£©µ±°ÑÉÏÎÊÖеçºÉq´ÓNµãÒÆµ½MµãµÄ¹ý³ÌÖУ¬¾²µçÁ¦×ö¹¦8¡Á10-9J£¬qµÄµçÊÆÄÜÊÇÔö¼Ó»¹ÊǼõС£¿M¡¢NÖ®¼äµçÊÆ²î´óСΪ¶àÉÙ£¿
·ÖÎö £¨1£©ÒÑÖª³¡Ô´µçºÉQµÄµçºÉÁ¿£¬ÖªµÀMµãµÄ³¡Ç¿£¬ÓɵãµçºÉµÄ³¡Ç¿¹«Ê½E=k$\frac{Q}{{r}^{2}}$¿ÉÒÔÖ±½ÓÇóµÃ½á¹û£»
£¨2£©ÓÉ¿âÂØ¶¨ÂɵĹ«Ê½¼´¿ÉÇó³öµãµçºÉµÄµçÁ¿£»
£¨3£©¸ù¾Ýµç³¡Á¦×ö¹¦µÄ¹«Ê½WMN=qUMN¿ÉÒÔÖ±½ÓÇóµÃµç³¡Á¦×öµÄ¹¦µÄ´óС£¬¼´¿ÉÇóµÃµçÊÆÄܵı仯£®
½â´ð ½â£º£¨1£©ÒÑÖªQ=2.0¡Á10-9C£¬MµãµÄ³¡Ç¿Îª200N/C
ÓÉE=k$\frac{Q}{{r}^{2}}$µÃMµãµ½QµÄ¾àÀëΪ£ºr=$\sqrt{\frac{kQ}{E}}$=$\sqrt{\frac{9¡Á1{0}^{9}¡Á2.0¡Á1{0}^{-9}}{200}}=0.1$m£»
£¨2£©40cm=0.4m
¸ù¾Ý¿âÂØ¶¨ÂÉF=$\frac{kQq}{{r}^{2}}$µÃ£ºq=$\frac{F{r}^{2}}{kQ}$=$\frac{1.8¡Á1{0}^{-8}¡Á0£®{4}^{2}}{9¡Á1{0}^{9}¡Á2.0¡Á1{0}^{-9}}=1.6¡Á1{0}^{-10}$C
£¨3£©µçºÉq´ÓNµãÒÆµ½Mµã£¬µç³¡Á¦×öÕý¹¦£¬qµÄµçÊÆÄܼõС£»
WMN=qUMN
ËùÒÔ£ºUMN=$\frac{{W}_{MN}}{q}$=$\frac{8¡Á1{0}^{-9}}{1.6¡Á1{0}^{-10}}$=5V
´ð£º£¨1£©ÈôMµãµÄ³¡Ç¿Îª200N/C£¬O¡¢M¾àÀëΪ0.1m£»
£¨2£©qµçÁ¿´óСΪ1.6¡Á10-10C£»
£¨3£©qµÄµçÊÆÄܼõС£¬M¡¢NÖ®¼äµçÊÆ²î´óСΪ5V£®
µãÆÀ ±¾Ìâ¹Ø¼üÕÆÎÕµãµçºÉµÄ³¡Ç¿¹«Ê½ºÍµç³¡Á¦×öµÄ¹¦¹«Ê½£¬ÖªµÀµçºÉ¿Ë·þµç³¡Á¦×ö¹¦¶àÉÙ£¬ÆäµçÊÆÄܾÍÔö¼Ó¶àÉÙ£¬ÕÆÎÕס»ù±¾ÄÚÈݾͿÉÒÔ½â¾öÕâµÀÌ⣮
| A£® | F1£ºF2=$\sqrt{2}$£º1 | B£® | F1£ºF2=1£º$\sqrt{2}$ | C£® | f1£¾f2 | D£® | f1£¼f2 |
| A£® | ÖØÁ¦×ö¹¦ÎªmgL | B£® | ÉþµÄÀÁ¦×ö¹¦Îª0 | ||
| C£® | ¿ÕÆø×èÁ¦f×ö¹¦Îª-mgL | D£® | ÍâÁ¦×öµÄ×ܹ¦ÎªmgL-$\frac{1}{2}$f¦ÐL |
| A£® | $\frac{m{v}_{0}^{2}}{2f}$ | B£® | $\frac{{2mv}_{0}^{2}}{f}$ | C£® | $\frac{2f}{{mv}_{0}^{2}}$ | D£® | $\frac{f}{{2mv}_{0}^{2}}$ |
| A£® | ÎïÖÊÊÇÓÉ´óÁ¿·Ö×Ó×é³ÉµÄ | |
| B£® | ·Ö×Ó¼äµÄÒýÁ¦Óë³âÁ¦¶¼Ëæ·Ö×Ó¼äµÄ¾àÀëµÄÔö´ó¶ø¼õС | |
| C£® | -2¡æÊ±Ë®ÒѾ½áΪ±ù£¬²¿·ÖË®·Ö×ÓÒѾֹͣÁËÈÈÔ˶¯ | |
| D£® | À©É¢ºÍ²¼ÀÊÔ˶¯µÄʵÖÊÊÇÏàͬµÄ£¬¶¼ÊÇ·Ö×ÓµÄÎÞ¹æÔòÔ˶¯ |