题目内容
15.| A. | 小球受重力、细绳的拉力和向心力作用 | |
| B. | θ 越大,小球运动的线速度越大 | |
| C. | θ 越大,小球运动的周期越大 | |
| D. | θ 越大,小球运动的向心加速度越小 |
分析 向心力是根据效果命名的力,可以是几个力的合力,也可以是某个力的分力,对物体受力分析时不能把向心力作为一个力分析,摆球只受重力和拉力作用;
摆球做圆周运动所需要的向心力是重力沿水平方向指向圆心的分力提供的,可以根据牛顿第二定律和向心力列式求出线速度、周期和向心加速度的表达式进行分析.
解答 解:A、小球只受重力和绳的拉力作用,二者合力提供向心力,如图所示,故A错误;![]()
BCD、结合几何关系,合力F合=mgtanθ,
合力提供向心力,故:
mgtanθ=ma=m$\frac{{v}^{2}}{Lsinθ}$=m($\frac{2π}{T}$)2Lsinθ
解得:a=gtanθ,v=$\sqrt{gLtanθsinθ}$,T=2π$\sqrt{\frac{Lcosθ}{g}}$;
故θ 越大,a不变,v变大,T变小,故B正确,CD错误;
故选:B
点评 对于向心力,要知道它是效果力,它由某一个力充当,或几个力的合力提供,它不是性质的力,分析物体受力时不能分析向心力.同时,还要清楚向心力的不同的表达式.
练习册系列答案
相关题目
5.
图甲中,两滑块A和B叠放在光滑水平地面上,A的质量为m1,B的质量为m2.设A、B间的动摩擦因数为μ,作用在A上的水平拉力为F,最大静摩擦力等于滑动摩擦力.图乙为F与μ的关系图象,其直线方程为F=$\frac{{m}_{1}({m}_{1}+{m}_{2})g}{{m}_{2}}$μ.下列说法正确的有( )
| A. | μ和F的值位于a区域时,A、B相对滑动 | |
| B. | μ和F的值位于a区域时,A、B相对静止 | |
| C. | μ和F的值位于b区域时,A、B相对滑动 | |
| D. | μ和F的值位于b区域时,A、B相对静止 |
3.
如图所示,一倾角为45°的斜面固定于竖直墙上,为使一光滑匀质铁球静止,需加一水平力F,若力F过球心,下列说法中正确的是( )
| A. | 球所受的合力为F | |
| B. | 球可能受墙的弹力且水平向左 | |
| C. | 球可能受斜面的弹力且垂直斜面向上 | |
| D. | 球一定同时受到墙的弹力和斜面的弹力 |
7.如图所示,A、B分别是甲、乙两小球从同一地点沿同一直线运动的v-t图象,根据图象可以判断( )
| A. | 在t=5s时,两球相距最远 | |
| B. | 在t=6s时,甲球的速率小于乙球的速率 | |
| C. | 在t=6s时,甲球的加速度小于乙球的加速度 | |
| D. | 在t=8s时,两球相遇 |
4.
如图所示,在倾角为θ的斜面顶端O点,以不同的水平速度抛出一小球.当以初速度v1抛出时,小球经过时间t1落到斜面的中点a;当以初速度v2抛出时,小球经过时间t2落到斜面的底端b,则 ( )
| A. | ${t_2}=\sqrt{2}{t_1}$ | B. | t2=2t1 | C. | v2=$\sqrt{2}$v1 | D. | v2=2v1 |
5.某物体的运动经仪器监控扫描,输入计算机后得到物体的位移x(m)和时间t(s)的关系式为:x=6t-t2.则物体( )
| A. | 初速度为6m/s | B. | 加速度为1m/s2 | ||
| C. | 前4 s的位移是8 m | D. | 前4 s的路程是8 m |