题目内容

9.如图所示的光滑斜面长为l,宽为b,倾角为θ,一物块(可看成质点)沿斜面左上方顶点P以初速度v0水平射入,恰好从底端Q点离开斜面,则(  )
A.物块由P点运动到Q点所用的时间t=2$\sqrt{\frac{2l}{gsinθ}}$
B.物块由P点运动到Q点所用的时间t=2$\sqrt{\frac{2l}{g}}$
C.初速度v0=b$\sqrt{\frac{g}{2l}}$
D.初速度v0=b$\sqrt{\frac{gsinθ}{2l}}$

分析 小球在光滑斜面有水平初速度,做类平抛运动,根据牛顿第二定律求出物体下滑的加速度,根据沿斜面向下方向的位移,结合位移时间公式求出运动的时间,根据水平位移和时间求出入射的初速度.

解答 解:AB、根据牛顿第二定律得物体的加速度为:a=$\frac{mgsinθ}{m}$=gsinθ.
根据l=$\frac{1}{2}$at2得:t=$\sqrt{\frac{2l}{gsinθ}}$,故AB错误;
CD、入射的初速度为:v0=$\frac{b}{t}$=b$\sqrt{\frac{gsinθ}{2l}}$,故C错误,D正确.
故选:D.

点评 解决本题的关键知道小球在水平方向和沿斜面向下方向上的运动规律,结合牛顿第二定律和运动学公式灵活求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网