ÌâÄ¿ÄÚÈÝ
9£®ÔÚ×ö̽¾¿Ð¡³µËÙ¶ÈËæÊ±¼ä±ä»¯µÄ¹æÂɵÄʵÑéÖУ¬Ä³Í¬Ñ§²Ù×÷ÖÐÓÐÒÔÏÂʵÑé²½Ö裬ÆäÖÐÓдíÎó»òÒÅ©µÄ²½Ö裮£¨ÒÅ©²½Öè¿É±àÉÏÐòºÅG¡¢H£©A£®Àסֽ´ø£¬½«Ð¡³µÒÆÖÁ¿¿½ü´òµã¼ÆÊ±Æ÷´¦ÏÈ·Å¿ªÖ½´ø£»ÔÙ½ÓͨµçÔ´£»
B£®½«´òµã¼ÆÊ±Æ÷¹Ì¶¨ÔÚÆ½°åÉÏ£¬²¢½ÓºÃµç·£»
C£®°ÑÒ»ÌõϸÉþË©ÔÚС³µÉÏ£¬Ï¸Éþ¿ç¹ý¶¨»¬ÂÖ£¬ÏÂÃæµõ×ÅÊʵ±ÖصĹ³Â룻
D£®È¡ÏÂÖ½´ø£»
E£®½«Æ½°åÒ»¶Ȩ̈¸ß£¬ÇáÍÆÐ¡³µ£¬Ê¹Ð¡³µÄÜÔÚÆ½°åÉÏ×öÔÈËÙÔ˶¯£»
F£®½«Ö½´ø¹Ì¶¨ÔÚС³µÎ²²¿£¬²¢´©¹ý¼ÆÊ±Æ÷µÄÏÞλ¿×£»
£¨1£©ËùÁв½ÖèÖÐÓдíÎóµÄÊÇA¡¢Àסֽ´ø£¬½«Ð¡³µÒÆÖÁ¿¿½ü´òµã¼ÆÊ±Æ÷´¦£¬ÏȽÓͨµçÔ´£¬ÔÙ·Å¿ªÖ½´ø£»
F¡¢ÏȶϿªµçÔ´£¬È¡ÏÂÖ½´ø£»£®
£¨2£©ÒÅ©µÄ²½ÖèÊÇ£ºG¡¢»»ÉÏÐÂÖ½´øÖظ´ÊµÑéÈý´Î£®
£¨3£©½«ÒÔÉϲ½ÖèÍêÉÆºóд³öºÏÀíµÄ²½Öè˳Ðò£ºBCFADG£®
·ÖÎö £¨1£©Ã÷È·¾ßÌåʵÑé²Ù×÷µÄÎïÀíÒâÒ壬ÊìÁ·Ê¹Óôòµã¼ÆÊ±Æ÷¼´¿ÉÕýÈ·½â´ð£»
£¨2£©£¨3£©ÊµÑé²½ÖèÒ»°ã±¾×ÅÏȰ²×°Æ÷²Ä£¬ºó½øÐÐʵÑéµÄ˼·½øÐУ¬Òª·ûºÏÊÂÎïÂß¼·¢Õ¹µÄ˳Ðò£¬²»ÄܵßÈýµ¹ËÄ£®
½â´ð ½â£º£¨1£©ËùÁв½ÖèÖÐÓдíÎóµÄÊÇ£º
A¡¢Àסֽ´ø£¬½«Ð¡³µÒÆÖÁ¿¿½ü´òµã¼ÆÊ±Æ÷´¦£¬ÏȽÓͨµçÔ´£¬ÔÙ·Å¿ªÖ½´ø£®
£¨2£©ÒÅ©²½Ö裺
G¡¢»»ÉÏÐÂÖ½´øÖظ´ÊµÑéÈý´Î£®
£¨3£©¶àÓàµÄ²½ÖèÊÇE£¬¹Ê½«ÒÔÉϲ½ÖèÍêÉÆºóд³öºÏÀíµÄ²½Öè˳Ðò£º
±¾×ÅÏȰ²×°Æ÷²Ä£¬ºó½øÐÐʵÑéµÄ˼·£¬ÈçÔÚ¸ÃʵÑéÖУ¬Ïȹ̶¨³¤Ä¾°å£¬°²×°´òµã¼ÆÊ±Æ÷£¬È»ºóƽºâĦ²ÁÁ¦£¬×¼±¸Íê±Ï¿ªÊ¼½øÐÐʵÑ飬עÒâÒªÏÈ´òµãºóÊÍ·ÅС³µ£¬×öÍêÒ»´ÎʵÑéÒª¼°Ê±¹Ø±ÕµçÔ´£¬¹ÊÕýÈ·µÄʵÑé²½ÖèÊÇ£º
BCFADG
¹Ê´ð°¸Îª£º
£¨1£©A¡¢Àסֽ´ø£¬½«Ð¡³µÒÆÖÁ¿¿½ü´òµã¼ÆÊ±Æ÷´¦£¬ÏȽÓͨµçÔ´£¬ÔÙ·Å¿ªÖ½´ø£»
F¡¢ÏȶϿªµçÔ´£¬È¡ÏÂÖ½´ø£»
£¨2£©G¡¢»»ÉÏÐÂÖ½´øÖظ´ÊµÑéÈý´Î£»
£¨3£©BCFADG£®
µãÆÀ ÕýÈ·Àí½âʵÑéÔÀí£¬¼ÓǿʵÑé²Ù×÷£¬ÕýȷʹÓûù±¾ÒÇÆ÷£¬ÊÇÕýÈ·½â´ðʵÑéÎÊÌâµÄǰÌᣮ
| A£® | F1´óÓÚF2 | B£® | F1СÓÚF2 | ||
| C£® | F1ºÍF2ÊÇÒ»¶ÔƽºâÁ¦ | D£® | F1ºÍF2ÊÇÒ»¶Ô×÷ÓÃÁ¦ºÍ·´×÷ÓÃÁ¦ |
| A£® | µ±SÓëaÁ¬½Ó£¬t=1¡Á10-2sʱ£¬µçÁ÷±íµÄʾÊýΪ0 | |
| B£® | µ±SÓëbÁ¬½Ó£¬t=1.5¡Á10-2sʱ£¬µçѹ±íµÄʾÊýΪ50$\sqrt{2}$V | |
| C£® | µ±SÓëbÁ¬½Óʱ£¬µç×èRÏûºÄµÄ¹¦ÂÊΪ100W | |
| D£® | µ±SÓëaÁ¬½Óʱ£¬1sÄÚµç×èRÉϵçÁ÷·´Ïò¸Ä±ä100´Î |
| A£® | 2$\sqrt{3}$s | B£® | 2$\sqrt{5}$s | C£® | 2$\sqrt{7}$s | D£® | 6s |
| A£® | 1£»2 | B£® | 2£º1 | C£® | 1£º4 | D£® | 4£º1 |
£¨1£©ÔÚA¡¢BÁ½µã·Ö±ðÓÃϸÏßÐü¹Ò¹³Â룬M¡¢CÁ½µãÓõ¯»É³ÓÁ¬½Óºó£¬Á¦¾ØÅÌÆ½ºâ£¨Èçͼ1Ëùʾ£©£¬ÒÑ֪ÿ¸ö¹³ÂëËùÊܵÄÖØÁ¦Îª1N£¬µ¯»É³ÓʾÊýµÄµ¥Î»ÎªN£¬ÇëÌîдÏÂÁÐʵÑéÊý¾Ý±í¸ñÖС°µÚÒ»´Î¡±ÊµÑéµÄÊý¾Ý£º
| ÄæÊ±Õë·½ÏòÁ¦¾ØÖ®ºÍ£¨N•m£© | ˳ʱÕë·½ÏòÁ¦¾ØÖ®ºÍ£¨N•m£© | |
| µÚÒ»´Î | 0.4 | 0.36 |
| µÚ¶þ´Î |
£¨A£©Ô²ÐĵÄ×óÉÏ·½£¨B£©Ô²ÐĵÄ×óÏ·½
£¨C£©Ô²ÐĵÄÓÒÉÏ·½£¨D£©Ô²ÐĵÄÓҲ࣬ÓëÔ²ÐÄͬ¸ß
£¨3£©Îª¸Ä½øÊµÑ飬ËûÃÇÌá³öÁ½ÖÖ·½°¸£º
·½°¸Ò»£ºÔÚͼ2ÖÐDµãÐü¹ÒÒ»¸ö¹³Â룬ÔÚÖ®ºóµÄÿ´ÎʵÑéÖб£³ÖÕâ¸ö¹³ÂëµÄÐü¹ÒλÖú͸öÊý²»±ä£¬Ëü²úÉúµÄÁ¦¾Ø¾Í¿ÉÒÔºÍÁ¦¾ØÅ̵ÄÖØÁ¦¾ØµÖÏûÁË£®
·½°¸¶þ£ºÔÚÖ®ºóµÄÿһ´ÎʵÑéÖУ¬¶¼ÔÚ˳ʱÕë·½ÏòµÄÁ¦¾ØÖ®ºÍÉϼÓ0.04N•m£¬¾Í¿ÉÒÔµÖÏûÖØÁ¦¾Ø²úÉúµÄÓ°ÏìÁË£®
ÄãÈÏΪÕâÁ½ÖÖ·½°¸B
£¨A£©¶¼¿ÉÐУ¨B£©¶¼²»¿ÉÐУ¨C£©·½°¸Ò»¿ÉÐУ¨D£©·½°¸¶þ¿ÉÐУ®
| A£® | ÉþµÄÀÁ¦¶Ôľ¿é²»×ö¹¦ | |
| B£® | ľ¿éÊܵ½×ÀÃæµÄĦ²ÁÁ¦ÑØÄ¾¿éÔ˶¯µÄÔ²ÖܵÄÇÐÏß·½Ïò | |
| C£® | ÉþµÄÀÁ¦´óСµÈÓÚm¦Ø$\sqrt{2}$$\sqrt{{l}^{2}+{r}^{2}}$ | |
| D£® | ÊÖÀľ¿é×ö¹¦µÄ¹¦ÂʵÈÓÚ$\frac{m{¦Ø}^{3}£¨{l}^{2}+{r}^{2}£©}{l}$ |