题目内容

精英家教网如图所示,一对光滑的平行金属导轨(电阻不计)固定在同一水平面内,导轨足够长且间距为L,左端接有阻值为R的电阻,一质量为m、长度为L的金属棒MN放置在导轨上,金属棒的电阻为r,整个装置置于方向竖直向上的匀强磁场中,磁场的磁感应强度为B,金属棒在水平向右的外力作用下,由静止开始做加速运动,保持外力的功率为P不变,经过时间t金属棒最终做匀速运动.求:
(1)金属棒匀速运动时的速度是多少?
(2)t时间内回路中产生的焦耳热是多少?
分析:(1)金属棒在功率不变的外力作用下,先做变加速运动,后做匀速运动,此时受到的安培力与F二力平衡,由法拉第定律、欧姆定律和安培力公式推导出安培力与速度的关系式,再由平衡条件求解速度;
(2)t时间内,外力F做功为Pt,外力F和安培力对金属棒做功,根据动能定理列式求出金属棒克服安培力做功,即可得到焦耳热.
解答:解:(1)金属棒匀速运动时产生的感应电动势为 E=BLv
  感应电流I=
E
R+r

金属棒所受的安培力 F=BIL
联立以上三式得:F=
B2L2v
R+r

外力的功率 P=Fv
匀速运动时,有F=F
联立上面几式可得:v=
P(R+r)
BL

(2)根据动能定理:WF+W=
1
2
mv2

其中 WF=Pt,Q=-W
可得:Q=Pt-
mP(R+r)
2B2L2

答:
(1)金属棒匀速运动时的速度是
P(R+r)
BL

(2)t时间内回路中产生的焦耳热是Pt-
mP(R+r)
2B2L2
点评:金属棒在运动过程中克服安培力做功,把金属棒的动能转化为焦耳热,在此过程中金属棒做加速度减小的减速运动;对棒进行受力分析、熟练应用法拉第电磁感应定律、欧姆定律、动能定理等正确解题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网